
lcreg 0.1.2 — Documentation

Peter Rösch∗

October 2019

Abstract

The software described in this document is concerned with the rigid and affine
registration of large 3D images. The differentiating feature of lcreg is its capacity
to efficiently register image data sets that do not fit into system memory.

∗Peter.Roesch@hs-augsburg.de

1

Contents

1 3D Image Registration with lcreg 3
1.1 Distinguishing features of lcreg . 3
1.2 Processing steps . 3
1.3 Building blocks and implementation 4
1.4 Command line executables . 5

2 Installation 6
2.1 Installing lcreg . 6
2.2 Additional software: ITK-SNAP and c3d 6

3 Configuration Files – Sections and Options 7
3.1 DEFAULT . 7
3.2 transformation . 8
3.3 masking . 9
3.4 multiresolution . 10
3.5 compression . 11
3.6 levenberg marquardt . 12
3.7 simple gradient . 13
3.8 output . 13

4 Tutorial 14
4.1 How to benefit from this tutorial . 14
4.2 Setup . 14
4.3 Conventions . 14
4.4 Compatibility testing . 14
4.5 Direct Levenberg-Marquard (LM) optimisation 15
4.6 Combination with simple gradient (SG) optimisation 19
4.7 Initialisation based on moments . 22
4.8 Manual initialisation using ITK-SNAP 25
4.9 Applying binary masks . 28
4.10 Affine transformations . 30

5 How to cite lcreg 32

6 Acknowledgements 32

References 33

lcreg 0.1.2, Peter Rösch 3

1 3D Image Registration with lcreg

Registration of images allows for the combination of complementary information con-
tained in different images and is frequently used as a preprocessing step in medical
image processing applications [1]. The aim of this documentation is to enable the
reader to efficiently apply the 3D image registration package lcreg [2]. Thus, this
document focuses on practical aspects. The theoretical background of medical image
registration in general and lcreg in particular can be found in the literature com-
piled in the references section.
After a brief overview of the lcreg approach, section 2 describes the installation
of the software followed by a detailed discussion of parameter settings. Finally, a
detailed hands-on tutorial guides the reader through the practical solution of typ-
ical registration tasks using a selection of example images and configuration files
accompanying this document.

1.1 Distinguishing features of lcreg

Advances in imaging technology, in particular improved spatial resolution, lead to
ever increasing image sizes. For example, high resolution nano CT data sets can reach
sizes above 30 gigabytes. As most current image processing libraries require images
to fit into random access memory (RAM), pairwise registration of theses images is
not possible on standard desktop computers. With the design and implementation
of lcreg, resource efficiency of 3D image registration could be significantly improved
so that very large images can now be processed in tens of minutes even on notebook
computers. This could be achieved by making use of recent advances in both hard-
ware and software technology, namely the availability of high speed solid state disks
(SSD) and fast on the fly compression software. These building blocks have been
combined with image processing algorithms specifically tailored and optimised for
the task at hand. More details concerning design and implementation are given in
section 1.3.

1.2 Processing steps

Image registration with lcreg involves the following processing steps:

Image format conversion: Images need to be converted into the meta image (.mhd)
format. This can be achieved using e.g. c3d [3].

Image import: Input images are converted to compressed data sets on disk based
on bcolz arrays. Note that input images are processed slice by slice so that
images not fitting into memory can be converted.

Creation of multi resolution representation: In order to improve the perfor-
mance with respect to both speed and robustness, images and masks (see be-
low) are resampled to lower resolutions where intensities of the low-resolution
image voxels are calculated by averaging the grey values in the corresponding
region of the high-resolution image.

http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.C3D
http://bcolz.blosc.org/en/latest

lcreg 0.1.2, Peter Rösch 4

Image masking: In order to exclude potentially disturbing structures like sample
holders, the corresponding image area can be excluded from the registration
process by providing binary masks.

Initialisation: Starting estimates for iterative optimisation can either be deter-
mined interactively using e.g. the manual registration functionality of ITK-
SNAP or determined from the moments of inertia with respect to image edges.
Furthermore, the identity transform can be used as a starting estimate.

Optimisation: Optimisation of the similarity measure with respect to the transfor-
mation is performed using a multi resolution approach [1] where registration
results obtained for a particular resolution are used as starting estimate for the
next higher resolution. Two different optimisation strategies are applied. For
moderate initial displacements, the method of choice is Levenberg-Marquardt
optimisation which has been applied previously for elastic registration [4] based
on local correlation similarity measure [5] which is also used in lcreg. However,
for larger initial displacements, a slow but robust gradient descent approach [6]
can optionally be applied at the lowest resolution level.

Export of results: After registration, the 4×4 homogeneous transformation matrix
representing the registration result is stored on disk. Optionally, the moving
image can be resampled into the space of the fixed image thus allowing a voxel
by voxel comparison. For validation purposes using the RIRE approach, output
files according to the RIRE standard can be created.

Verification: Using the external tool ITK-SNAP, registration success can be as-
sessed by overlaying the registered moving image to the fixed image or by in-
vestigating difference images. Furthermore, the image parts actually used for
registration can be visualised in order to improve parameter settings in case of
misregistration.

Cleanup: Finally, intermediate images data can be deleted

1.3 Building blocks and implementation

Three principles governed the implementation process of the lcreg application:

1. Performance-critical image processing operations are implemented from scratch
using an optimising static compiler.

2. The core application lcreg does not require any input or intermediate image
to fit into Random Access Memory (RAM) of the computer.

3. Rather than re-implementing common operations, existing libraries are used.

4. The number of dependencies on external libraries is kept to a minimum.

From these principles, the following decisions have been derived:

1. Low-level operations like interpolation, resampling, masking and similarity mea-
sure calculation have been implemented using cython [7]. Wherever reasonable,
parallelisation via multiple threads has been applied. Optimised cython func-
tions are aggregated into a single shared library.

http://www.itksnap.org
http://www.itksnap.org
http://insight-journal.org/rire
http://www.itksnap.org
www.cython.org

lcreg 0.1.2, Peter Rösch 5

2. The highly efficient bcolz [8] extension is used for on-the-fly compression and
decompression of on-disk image data. Compressed on-disk arrays are accessed
block by block analogous to numpy arrays.

3. Handling of transformations, in particular conversion between matrix and quater-
nion representation, is performed using the module scipy.spatial.transform.

4. For the sake of reproducibility, parameters are passed to lcreg by means of a
configuration file which can be modified using a standard text editor or created
automatically within a batch processing setup.

5. scipy [9] is used to reformat the moving image into the voxel space of the
fixed image after registration. As numpy supports memory-mapped files via the
numpy.memmap functionality, images need not to fit into physical RAM for this
processing step.

6. In summary, lcreg depends on four external libraries, namely numpy, scipy,
bcolz and psutil. Optionally, py-cpuinfo can be installed in order to incor-
porate CPU information into the log file.

1.4 Command line executables

The package contains the following executables:

lcreg: Start image registration using settings from the given parameter file.
usage: lcreg parameter_file_name

lcreg profile: Start lcreg in profiling mode. Profiling resutls are printet to stdout.

abs difference mhd: Calculate the absolute grey value difference between two im-
ages in mhd formt specified by their names im1 name and im2 name. The result
is stored in an image named out im name. Image dimensions need to agree.
usage: abs_difference_mhd im1_name im2_name out_im_name

view compressed images: Uncompress images stored in the internal format and use
ITK-SNAP to visualise them.
The first parameter specifies a directory where temporary files, i.e. uncom-
pressed images, are stored. Note that enough disk space to hold these uncom-
pressed images needs to be available.
The parameters path name 1 . . . path name N specify the paths of the bcolz

directories containing compressed data.
usage: view_compressed_images tmp_prefix path_name_1 path_name_2 ...

isq to mhd Convert images from the ISQ format into the meta image format.
usage: isq_to_mhd isq_image_name mhd_image_name

http://bcolz.blosc.org/en/latest/
https://www.scipy.org
https://docs.python.org/3/library/profile.html
http://www.scanco.ch/en/support/customer-login/faq-customers/faq-customers-general.html

lcreg 0.1.2, Peter Rösch 6

2 Installation

2.1 Installing lcreg

Binary distributions of the software are available for the 64 bit versions of linux (64
bit), windows (64 bit) and Mac OS X. Using the source distribution, the software
can be automatically installed on other operating systems where a C++ compiler
is required to create the shared library containing optimised functions created from
cython code.
lcreg depends on the following Python packages:

numpy version >= 1.1

scipy version >= 1.1

bcolz version >= 1.2

psutil version >= 5.4

Optionally, the package py-cpuinfo (version ≥ 4) can be installed to allow for a more
detailed description of system properties in the log file. Development and testing has
been performed with the Anaconda distribution Using Anaconda, the dependencies
can be installed with the following command:

conda install numpy scipy bcolz psutil py-cpuinfo

The lcreg package itself installed by typing

pip install lcreg

for Python (CPython) versions 3.6 and above.

2.2 Additional software: ITK-SNAP and c3d

ITK-SNAP allows for the interactive comparison of image pairs before and after reg-
istration. Furthermore, the manual registration mode can be applied to create text
files containing homogeneous transformation matrices which can be imported from
lcreg and used as starting estimates. The command line tool c3d which is contained
in the ITK-SNAP distribution provides functionality for image format conversion and
image reformatting. In particular, various image formats can be converted in mhd

images required by lcreg. After registration, c3d can be applied to reformat the
moving image using higher interpolation orders (e.g. cubic) rather than linear inter-
polation applied within lcreg.
Installers for ITK-SNAP (Version 3.8 and above) including the c3d command line
tool can be found at the download page. The executables c3d and itksnap (Linux)
or ITK-SNAP (Windows) should be part of the user or system search path (Linux:
environment variable $PATH, Windows: Advanced system settings).

https://github.com/workhorsy/py-cpuinfo
http://www.anaconda.com
http://www.itksnap.org
http://www.itksnap.org/pmwiki/pmwiki.php?n=Convert3D.Convert3D
http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.SNAP3

lcreg 0.1.2, Peter Rösch 7

3 Configuration Files – Sections and Options

The command line tool takes exactly one command line argument specifying the
name of configuration file in INI format, for example

lcreg post_to_pre.ini

3.1 DEFAULT

This section contains general registration settings.
Typical example taken from the tutorials:

[DEFAULT]

ini_version = 1

image_directory = ../mhd

fixed_image_name = ${image_directory}/pre.mhd

moving_image_name = ${image_directory}/post.mhd

fixed_mask_image_name = None

moving_mask_image_name = None

working_directory_name = ../lcreg/endo

output_directory_name = ${working_directory_name}/results

reuse_existing_input_images = False

log_level = DEBUG

mem_limit_mb = -1

nr_of_threads = -1

remove_temporary_images = False

ini version: lcreg ini file version, current setting: 1.

image directory: Absolute or relative path to the directory containing image data.
The value can be used as a file name prefix (see below).

fixed image name: Name of the fixed image file including suffix. Previously de-
fined variables can be used applying the ${variable name} syntax.

moving image name: File name of the moving image which is transformed to
match the fixed image.

fixed mask image name: Name of binary mask image file for the fixed image or
None for no masking.

moving mask image name: Name of binary mask image file for the moving image
or None for no masking.

working directory name: Relative or absolute path to store compressed image
data. If the directory does not exist it will be created by lcreg.

output directory name: Directory where files representing registration results,
i.e. transformation matrix, resampled moving image etc. should be stored.

reuse existing input images: If set to True, existing compressed input files will
be re-used rather than overwritten.

https://en.wikipedia.org/wiki/INI_file

lcreg 0.1.2, Peter Rösch 8

log level: Level for the python logging system. Possible Values are CRITICAL,

ERROR, WARNING, INFO or DEBUG. Logging output is appended to
${output directory name}/lcreg.log.
Recommendation: INFO
Setting for the tutorials: DEBUG to get more details for result assessment.

mem limit mb: Amount of RAM in MiB to be used for image registration. If the
parameter is set to -1, all available RAM will be used.
Setting for the tutorials: -1 to use all memory available.

nr of threads: Number of threads to be launched for image processing. If the
parameter is set to -1, all available CPU threads are used.
Setting for the tutorials: -1 to use all threads.

remove temporary images: If set to True, intermediate files, in particular re-
sampled and masked image files at different resolutions, will be automatically
removed after registration. Note that some registration assessment tools e.g. vi-
sualisation of masked images at different resolution levels can not be applied if
this flag is set to True.
Recommendation: False (if sufficient disk space is available).
Setting for the tutorials: False to allow for result assessment.

3.2 transformation

This part defines the type of transformation to be optimised and the way the initial
transformation is determined. If no initial transformation file is provided and ini-
tialisation from edge moments is disabled, the identity transform is used as starting
estimate for optimisation.
Typical example taken from the tutorials:

[transformation]

transformation_type = rigid

initial_transformation_file_name = None

initial_transform_is_RAS = True

initial_transform_is_inverted = False

store_as_RAS = True

initialise_from_edge_moments = False

initialise_shift_only = False

transformation type: Type of transformation to be optimised. Possible Settings:
rigid (3D translation and rotation, 6 parameters) or
affine (3D translation, rotation, scale and shear, in total 12 parameters)
Setting for the tutorials: rigid except for the brain atlas example.

initial transformation file name: Name of a text file containing a transformation
in terms of a 4× 4 transformation matrix in homogeneous coordinates or None.

initial transform is RAS: The two most common anatomical coordinate systems
are LPS and RAS (see e.g. 3D Slicer documentation). Internally, lcreg uses

https://docs.python.org/3.6/library/logging.html
https://www.slicer.org/wiki/Coordinate_systems

lcreg 0.1.2, Peter Rösch 9

LPS. However, according to the documentation, c3d uses the RAS frame. Thus,
it is recommended to keep transformations stored on disk in the RAS system
so that they can be read from c3d.
Recommended setting: True.
Setting for the tutorials: True so that the matrix can be used directly by c3d.

initial transform is inverted: If set to True, the inverse of the matrix given in
the text file is used as initial estimate.
Setting for the Tutorials: False.

store as RAS: See option initial transform is RAS.
Recommended setting: True
Setting for the tutorials: True.

initialise from edge moments: For large initial translations and rotations, the
moments of inertia of the edge images can be used for initialisation. If not all
anatomical structures contained in the fixed image are present in the moving
image or vise versa, initialisation using edge moments can fail. In these cases,
manual initialisation using ITK-SNAP as demonstrated in section 4.8 is prefer-
able.
Setting for the tutorials: False except for the caries and preparation post pre

examples.

initialise shift only: For small initial rotations it can be sufficient and mor stable
(in particular for symmetrical structures) to use the centre of gravity with
respect to image edges to initialise translation only.
Setting for the tutorials: False except for the preparation post pre example.

3.3 masking

In order to exclude irrelevant structures (e.g. sample holders) which might disturb
registration, either a grey value range or a binary mask (see section 3.1) can be
specified. As the local correlation similarity measure used in lcrec quantifies the
alignment of corresponding edges, image voxels with relatively small values of the
local absolute grey value gradient can be excluded from the registration process. This
results in both an improved convergence behavior of similarity measure optimisation
and a considerable speedup of similarity measure calculation as only a small fraction
of voxels need to be taken into account.
Typical example:

[masking]

fixed_grey_masking_range = 100 7500

moving_grey_masking_range = None

fixed_used_gradient_magnitude_fraction = 0.01

moving_used_gradient_magnitude_fraction = 0.02

fixed grey masking range: Lower and upper limit for fixed image thresholding
prior to registration or None.
Setting for the tutorials: None.

https://sourceforge.net/p/c3d/git/ci/master/tree/doc/c3d.md

lcreg 0.1.2, Peter Rösch 10

moving grey masking range: Lower and upper limit for moving image thresh-
olding prior to registration or None.
Setting for the tutorials: None.

fixed used gradient magnitude fraction: Percentage of voxels of the fixed im-
age to be used for registration. Voxels are sorted in decreasing order with
respect to their local absolute gradient value. The given fraction corresponds
to the percentile of voxels to be used for registration. Typical values range from
0.01 for high contrast µCT images to 0.2 for noisy MRT images.
Setting range in the tutorial: 0.01 – 0.05

moving used gradient magnitude fraction: Percentage of voxels of the moving
image to be used for registration.
Setting range in the tutorial: 0.01 – 0.05

3.4 multiresolution

In order to increase the robustness of the optimisation process, registration starts with
a low-resolution representation of fixed and moving image where the transformation
is initialised by one of the methods described in section 3.2. For this purpose, a multi
resolution pyramid of the images is created. Voxel size from level to level is either
doubled or increased by a factor of

√
2. Note that the local correlation similarity

measure requires fixed and moving image to have the same spatial resolution. Thus
image resampling allowing for arbitrary scaling factors is required. Optionally, images
can be resampled to isotropic resolution.
Typical example taken from the tutorials:

[multiresolution]

pyramid_min_scale_factor = 1

pyramid_sqrt2_scaling = True

pyramid_cubic_voxels = False

pyramid_min_voxel_nr = 64**3

pyramid min scale factor: Scaling factor fs to be applied for the highest resolu-
tion used during optimisation. Voxel spacing for the highest resolution level
~smin is given by

~smin = fs

 max(sx,fixed, sx,moving

max(sy,fixed, sy,moving

max(sz,fixed, sz,moving


For noisy images, this parameter can often be set to a value of 2 without

significant loss of registration accuracy.
Setting for the tutorials: 1

pyramid sqrt2 scaling: If set to True, the resolution change from level to level is√
2, a setting of False results in a pyramid where voxel size is doubled from

level to level. A setting of False is preferable unless images are noisy or the
initial size of the images is small.
Settings for the tutorials: True or False depending on image properties.

lcreg 0.1.2, Peter Rösch 11

pyramid cubic voxels: Resampling images to isotropic resolutions (setting: True)
can speed up registration but tends to reduce accuracy as information in the
directions with higher spatial resolution is lost.
Setting for the tutorials: False

pyramid min voxel nr: Minimum number of image voxels in the multi resolution
pyramid. Downsampling stops as soon as a resampled version of either fixed
or moving images contains less voxels than the number specified here. The ex-
pression provided is evaluated and the result is taken as numerical parameter.
Depending on original image sizes and on the percentage of the image volume
relevant for registration, values between 32**3 and 128**3 have been success-
fully applied for a large set of test images.
Settings for the tutorials: 32**3, 64**3

3.5 compression

Compression based on bcolz is one of the core components of lcreg. Image grey
value data is converted from mhd raw files in an internal, compressed format controlled
by parameters set in this section.
Typical example taken from the tutorials:

[compression]

fixed_image_bits_per_pixel = 10

moving_image_bits_per_pixel = 10

cname = lz4

clevel = 9

shuffle = bcolz.BITSHUFFLE

fixed image bits per pixel: Number of bits to represent fixed image grey values.
The lower the number specified here, the higher the compression factor. Note
that reducing the number of bits per pixel increases quantisation error. Typical
values are 10 for CT images and 8 for MRT images.

moving image bits per pixel: 10 Number of bits to represent fixed image grey
values.
Setting for the tutorials: 10

cname: Name of the compressor to be used by bcolz. Possible options are described
in the bcolz documentation and compared in the blosc tutorial.
Setting for the tutorials: lz4.

clevel: Compression level, possible values are in the range 0 . . . 9. Higher values re-
sult in smaller sizes of compressed image sizes on the cost of higher computation
time for image conpression.
Setting for the tutorials: 9.

shuffle: Shuffling can improve the compression rate, see blosc tutorial.
Setting for the tutorials: bcolz.BITSHUFFLE.

http://bcolz.blosc.org/en/latest
http://bcolz.blosc.org/en/latest/reference.html
http://python-blosc.blosc.org/tutorial.html
http://python-blosc.blosc.org/tutorial.html

lcreg 0.1.2, Peter Rösch 12

3.6 levenberg marquardt

The local correlation based similarity measure (1-LCC) used here allows for the
analytical calculation of derivatives with respect to transformation parameters. Fur-
thermore, 1-LCC is small in the vicinity of the optimum and exhibits a quadratic
shape. Thus, the highly efficient Levenberg-Marquard optimisation scheme (LM) can
be used.
Generally speaking, LM is the weighted combination of the two optimisation meth-
ods gradient descent and the Gauss-Newton algorithm where the relative weight of
gradient descent is controlled by the parameter lambda. As gradient descent works
well further away from the optimum but is inefficient close to the minimum of (1-
LCC), lambda is decreased after each successful optimisation step thus increasing
the relative weight of the Gauss-Newton algorithm which is very efficient as soon as
the optimisation process approaches the minimum. If an optimisation step increases
(1-LCC), lambda is increased and so is the influence of gradient descent. A detailed
description of the procedure can be found in [11].

Typical example taken from the turorials:

[levenberg_marquardt]

initial_lambda = 1

lambda_upscale_factor = 10

lambda_downscale_factor = 0.1

max_nr_of_iterations = 50

max_nr_of_upscale_steps = 4

min_edge_voxel_displacement = 0.001

initial lambda: Initial value for the parameter lambda.
Setting for the tutorials: 1.

lambda upscale factor: After an optimisation step which increased (1-LCC), the
relative weight of gradient descent is increased by multiplying lambda with the
factor defined here.
Settings for the tutorial: 10 for rigid, 1.1 for affine registration.

lambda downscale factor: 0.1 After a successful optimisation step which decreased
(1-LCC), the relative weight of gradient descent is decreased by multiplying
lambda with the factor defined here.
Settings for the tutorials: 0.1 for rigid, 0.9 for affine registration.

max nr of iterations: Maximum number of iterations per resolution level. This
termination condition stops the optimisation after a certain number of steps if
none of the other two conditions described below is met.
Setting for the tutorial 50

max nr of upscale steps: Stop optimisation after a certain number of steps which
increased (1-LCC) and thus lambda.
Setting for the tutorials: 4

lcreg 0.1.2, Peter Rösch 13

min edge voxel displacement: Parameter controlling the main termination cri-
terion: Optimisation is stopped if the last update step which decreased (1-LCC)
led to a negligible transformation update. A transformation update is consid-
ered negligible if the physical world position of image corners is modified by
less than the specified fraction of a voxel diameter.
Setting for the tutorials: 0.01

3.7 simple gradient

For large initial displacements LM optimisation might not converge. For these situ-
ations, a slow but robust simple gradient descent optimisation which modifies only
one parameter per step [6] can be applied at the lowest resolution level prior to LM
optimisation.
Typical example taken from the tutorials:

[simple_gradient]

active = False

delta_v_initial = 4

delta_v_min = 0.5

active: Boolean variable switching simple gradient optimisation on or off.
Setting for the tutorials: True for examples preparation, RIRE training,

veneer.

delta v initial: Initial step size for simple gradient optimisation. If no further de-
crease of (1-LCC) can be achieved, simple gradient optimisation is continued
with halved step size.
Setting for the tutorials: 4

delta v min: Minimum step size used in simple gradient optimisation in units of
voxel sizes.
Setting for the tutorials: 0.25

3.8 output

This section specifies the output generated by lcreg.
Typical example taken from the tutorials:

[output]

resample_moving_image = True

store_RIRE_validation_file = False

RIRE_header =

resample moving image: Boolean specifying whether the moving image should be
resampled in the voxel space of the fixed image thus allowing for a comparison
on voxel level or for calculation of difference images. If set to True, resampling

lcreg 0.1.2, Peter Rösch 14

is performed using scipy.ndimage.
Setting for the tutorials: True.

store RIRE validation file: If set to True, the transformation is written to a
file that can be submitted to the Retrospective Image Registration Evalua-
tion Project.
Setting for the tutorials: True only for the RIRE training example.

RIRE header: Header information written to the RIRE validation file. The header
includes e.g. investigator, site and method information, see RIRE training data
sets for templates.

4 Tutorial

In this section it is shown how typical registration tasks can be solved with lcreg.
Specific parameter settings are derived from the properties of the actual registration
problem.

4.1 How to benefit from this tutorial

This hands on tutorial aims at enabling the reader to practically solve registration
tasks with lcreg. This requires the reader to actually apply the steps described
in this documents using the provieded samples. Please note that just reading the
tutorial is not effective as the interactive components (e.g. investigation of registration
results) form an integral part of this approach.

4.2 Setup

Apart from the installation of lcreg (see section 2), the archive containing sample
data sets and lcreg parameter files needs to be downloaded from https://lcreg.de

and extracted. Free disk space of at least 1GB is required.

4.3 Conventions

Path and excecutable names are given in Linux style (e.g. ../endo/mhd). For Win-
dows, simply replace the path separator “/” by “\” and the command “itksnap” by
“ITK-SNAP”.
Furthermore, automatically generated scripts are named e.g. “snap-reg.sh” on op-
erating systems and “snap-reg.bat” on Windows.

4.4 Compatibility testing

The software has been developed and tested using different versions of Python and
the libraries mentioned in section 1.3. However, it can not be guaranteed that lcreg
will work with future versions of these libraries. In order to test the compatibility
of lcreg with new library versions, reference log files are provided for each example

http://insight-journal.org/rire
http://insight-journal.org/rire
http://insight-journal.org/rire/download_training_data.php
http://insight-journal.org/rire/download_training_data.php
https://lcreg.de

lcreg 0.1.2, Peter Rösch 15

discussed in the tutorial. In case of inaccuracies resulting from incompatibilities, the
differences between log files created with new library versions and the reference log
files can be useful to identify the origin of the problem.

4.5 Direct Levenberg-Marquard (LM) optimisation

If both the length of the translation vector and the rotation angles between fixed
and moving image are relatively small i.e. within the capture range of LM optimi-
sation, the identity transform can be used as starting estimate and simple gradient
optimisation is not required. The configuration file used for the example described in
this section is relatively simple. However, a profound understanding of these settings
is important to master more complex registration tasks presented in the following
sections.

4.5.1 Example endo

The image pair shows the root of a tooth before and after endodontic treatment.
Isotropic resolution is 0.04 mm for both images. Image dimensions are 332×283×334
voxels corresponding to 60 MiB per 16 bit integer image. As the sample had to be
taken out of the µCT device to perform the procedure, the images are not aligned
perfectly. lcreg is used to correct for the misalignment.

Visualising the images Prior to registration, the original images are overlaid
using ITK-SNAP. Assuming that a command line interface (Linux-Terminal or Win-
dows cmd) has been opened in the directory where the image data is stored
(i.e. lcreg tutorial data/endo/mhd). On Linux systems, image visualisation is
invoked by typing

itksnap -g pre.mhd -o post.mhd

As described in section 4.3, the corresponding Windows command is;

ITK-SNAP -g pre.mhd -o post.mhd

After loading the files, we automatically adjust contrast by typing <ctrl> j or via the
menu Tools → Image Contrast → Auto-Adjust Contrast. Then, the display is
switched to overlay mode by clicking on post in the Layer section with the right
mouse button and choosing “Display as overlay”. Finally, the relative weight of pre
and post image can be changes with the Opacity slider (see figure 1). Varying the
slider the following conclusions can be drawn:

• Tissue within the root canal has been removed in the course of treatment. This
results in differences between the pre and post images. These differences are
essential to assess the outcome of the procedure.

• Other differences in the vicinity of the outer root boundary result from repo-
sitioning inaccuracies. These differences should not be present any more after
successful image registration.

• In this case, the images are shifted slightly with respect to each other. Appar-
ently, no significant rotation between images is visible.

lcreg 0.1.2, Peter Rösch 16

Figure 1: Overlay of endo pre and post images with ITK-SNAP

Setting up the parameter file In the parameter file endo.ini paths are spec-
ified relative to the ini directory so that lcreg has to be started from the ini

directory. Note that this is not neccessary if absolute paths are given. The same
holds for the working directory which is set to ../lcreg/endo relative to the ini

directory.
In the [transformation] section, rigid registration is selected. As both the options
initial transformation file name and initialise from edge moments are set
to None, the identity transform is used as initial estimate for iterative optimisation.
In the masking section, no binary mask files are specified and the gradient magni-
tude fraction is set to 1 % (0.01) for both images. A value of 1 for the parameter
pyramid min scale factor in the [multiresolution] section make sure that the
finest resolution used for registration corresponds to the original image resolution
according to the description in section 3.4. The lowest resolution used for registra-
tion is selected such that the number of voxels in the corresponding image is above
643. Compression, optimisation and output settings correspond to the default values
defined in section 3.

lcreg 0.1.2, Peter Rösch 17

Starting lcreg The actual registration is started by typing

cd ../ini

lcreg endo.ini

Registration takes about 16 seconds on a notebook computer with a 2.6 GHz dual
core Intel c© Core c© i5-3320M CPU.

Assessing registration results - Output files In order to examine regis-
tration results with command line tools, we change the working directory of our
command line interpreter to the results directory
lcreg tutorial data/endo/lcreg/endo/results.
We notice that the following files have been created (note that Windows executable
scripts have the suffix ”.bat”):

lcreg result.mat: Text file containing the transformation determined by lcreg in
terms of a 4× 4 matrix (homogeneous coordinates). Depending on the setting
of the parameter store as ras in the transformation section, the matrix is
stored either in the RAS or LPS coordinate frame.

moving registered.mhd: This file which is only created for rigid registration is
identical to the .mhd file of the moving image except for the Offset and
TransformMatrix entries which have been subjected to the inverse of the trans-
formation determined by the registration.
As ITK-SNAP takes into account image origin and orientation, an overlay of
the original fixed image and the image represented by moving registered.mhd

should present correct overlays of corresponding anatomical structures.

lcreg.log: log file documenting individual steps of the registration process where
individual entries contain e.g. a time stamp and the logging level.

snap unreg.sh (snap unreg.bat): Executing this script will load the unregistered
image pair into ITK-SNAP and display them. For the endo example, the output
corresponds to fig. 1 if images are displayed as overlay.

snap reg.sh (snap reg.bat): Executing this script will load the registered image
pair into ITK-SNAP and display them.

c3d call.sh (c3d call.bat): Script to transform the moving image into the voxel
space of the reference image using c3d -reslice-matrix lcreg result.mat

with cubic interpolation.
The name of the output image is resampled moving image c3d.mhd.

view masked pyramid.sh (view masked pyramid.sh.bat): This script uncom-
presses the masked (i.e. edge) images of the multi resolution pyramid and dis-
plays all images with ITK-SNAP. Thus, the script allows the user to visualise the
image parts used for registration and to correct the parameter
fixed used gradient magnitude fraction if necessary.

lcreg results.ini: Input file complemented by additional information e.g. the names
of intermediate files, registration results for the individual resolution levels and
the final value of the similarity measure.

lcreg 0.1.2, Peter Rösch 18

resampled moving image scipy.mhd (.raw): Moving image resampled in the
voxel space of the fixed image using linear interpolation. This file is created
only if the flag resample moving image is set to True.

Assessing registration results - concrete approach In order to visualise
both intermediate images and results we change to the results directory

cd lcreg_tutorial_data/endo/lcreg/endo/results

In the first step, the situation prior to registration is visualised by typing

Linux

./snap_ungreg.sh

REM Windows

snap_unreg.bat

To see which parts of the images have been used for registration, we type

Linux

./snap_ungreg.sh

REM Windows

snap_unreg.bat

Changing the opacity slider, the relative weights of fixed and moving image can be
modified. To overlay the registered moving image with the fixed image, the following
commands are used:

Linux

./snap_reg.sh

REM Windows

snap_reg.bat

In order to visualise the parts of the images that have been used for registration at
the individual resolution levels, simply type

Linux

./view_masked_pyramid.sh

REM Windows

view_masked_pyramid.bat

Note that voxels in the fixed images are used directly for similarity measure calcu-
lation whereas corresponding grey values in the moving images are determined by
interpolation. Linear interpolation involves eight neighboring voxels. Thus more
nonzero voxels are present in the masked moving images than in the masked fixed
images. Visualisation of edge images allows to adjust the parameters
fixed used gradient magnitude fraction and
moving used gradient magnitude fraction in the input file. If relevant edges are
not visible in the image, the value of this parameter should be increased. If back-
ground or noise-induced structures are present in the edge images, the value of the
parameter should be reduced.
The absolute difference images between fixed and moving before and after registration
are calculated by typing

lcreg 0.1.2, Peter Rösch 19

abs_difference_mhd ../../../mhd/pre.mhd \

../../../mhd/post.mhd \

abs_difference_unreg.mhd

abs_difference_mhd ../../../mhd/pre.mhd \

resampled_moving_image_scipy.mhd \

abs_difference_reg.mhd

Note that in the Windows command line tool the character “^” rather than “\” is
used for multi line commands. The resulting images can again be visualised using
ITK-SNAP. In order to transform the moving image into the voxel space of the fixed
image using c3d and cubic interpolation we type

Linux

./c3d_call.sh

Rem Windows

c3d_call.bat

The transformation used by c3d is stored in the text file lcreg result.mat. The
output configuration file lcreg results.ini containing intermediate information
can be viewed using a text editor. Finally, the log file lcreg.log contains detailed
information about the individual processing steps where the verbosity of logging is
controlled by the parameter log level in the DEFAULT section of the input file.

Conclusions In this case, registration using the identity transform as starting
estimate for LM optimisation was succesful due to the small initial displacement of
the images.

Please note In this section, both the Linux and Windows version of commands
have been explained. For the sake of brevity, only the Linux version is given in the
remainder of this document.

4.6 Combination with simple gradient (SG) optimisa-
tion

If the identity transform is used as starting estimate for iterative optimisation and the
length of the initial displacement vector or rotation angles exceed a certain threshold,
the Levenberg Marquardt algorithm may not converge to the correct solution. In
these cases, an simple gradient optimisation method [6] with a larger capture range
can be applied at the lowest resolution of the pyramid. The SG optimisation modifies
only one parameter during each iteration where fixed step sizes for all parameters are
used. Once the similarity measure can not be reduced further for the current step
sizes, step sizes are halved and the procedure is repeated until the minimum step size
has been reached. The results of SG optimisation are then used as starting estimates
for the more efficient LM algorithm.

lcreg 0.1.2, Peter Rösch 20

4.6.1 Example RIRE training with LM

The example used here is one of the training data set pairs (CT and rectified Pro-
ton Density weighted MRI images of the head) provided for the RIRE validation
approach [12]. First of all, we change to the directory containing the images:

cd lcreg_tutorial_data/RIRE_training/mhd

Displaying an overlay of both images shows a relatively large initial displacement.
Furthermore, the different contrast of CT and MR data set is clearly visible. The
required command is1

tksnap -g training_001_ct.mhd -o training_001_mr_PD_rectified.mhd

Setting up the parameter file Right at the beginning of the parameter file
training_001_mr_PD_rectified_to_ct_LM_only.ini the following new parame-
ters are introduced:

patient_id = training_001

fixed_modality = ct

moving_modality = mr_PD_rectified

modality_combination = ${fixed_modality}_to_${moving_modality}

These settings are required to automatically create a file that can be submitted for
evaluation according to the RIRE procedure.
In the masking section, fractions are set to 3 % and 5 % for fixed (CT) and moving
(PD) image, respectively:

fixed_used_gradient_magnitude_fraction = 0.03

moving_used_gradient_magnitude_fraction = 0.05

These values are higher than for the caries example. The reason for this is that the
strongest eges in the CT images correspond to transitions from bone to soft tissue
whereas edges within the brain are more pronounced in the MR image. So in order
to obtain corresponding edges contributing to the LCC measure, a larger fraction of
edges in both images need to be preserved.

Starting lcreg The actual registration is started by typing

cd ../ini

lcreg training_001_mr_PD_rectified_to_ct_LM_only.ini

within the ini subdirectory. Registration takes about 7 seconds on a notebook
computer with a 2.6 GHz dual core Intel c© Core c© i5-3320M CPU.

1Use the overlay feature of itksnap as described in the previous section

http://insight-journal.org/rire

lcreg 0.1.2, Peter Rösch 21

Assessing registration results After changing into the results directory, we
first visualise the parts of the images used for registration:

cd ../lcreg/LM_only/results

./view_masked_pyramid.sh

Note that for lower resolutions, almost the complete anatomical content is used
whereas for the highest resolution, LCC calculation is restricted to prominent edges.
Finally, the overlay of the images after registration is visualised:

./snap_reg.sh

Obviously, the images are still misaligned so registration was not successful.

Conclusions In this case, registration was not succesful. One possible explanation
is the significant initial displacement in combiniation with the identity transform that
has been chosen as initial estimate. The limited capture range of LM optimisation
prevented the optimisation process to converge to the correct transformation.

4.6.2 Example RIRE training with SG and LM

In order to successfully solve the regisration problem presented in the previous sec-
tion, LM optimisation is preceded by a Simple Gradient (SG) descent starting from
the identity transform at the lowest resolution. SG optimisation is less efficient but
more robust than the LM algorithm. The result of the SG approach is used as initial
estimate for LM optimistaion. At higher resolutions, only LM optimisation is applied
as optimisation starts from the result of the next lower resolution step which should
be close to the optimium already.

Setting up the parameter file The parameter file presented in the previous
section is modified in the simple gradient section:

[simple_gradient]

active = True

delta_v_initial = 4

delta_v_min = 0.25

where the first line switches on SG optimisation and the second line sets the initial
step width to a displacement of 4 voxels. Finally, the setting in the last line results in
a minimum step width of SG descent corresponding to a displacement of 0.25 voxels.
In many cases, the parameter delta v min can be set to 1.0. However, due to the
relatively large slice thickness of 4 mm, a smaller value has been chosen in this case.

Starting lcreg The actual registration is started by typing

cd lcreg_tutorial_data/RIRE_training/ini

lcreg training_001_mr_PD_rectified_to_ct_SG_and_LM.ini

Registration takes about 8 seconds on a notebook computer with a 2.6 GHz dual
core Intel c© Core c© i5-3320M CPU.

lcreg 0.1.2, Peter Rösch 22

Assessing registration results Again, registered images are overlaid:

cd ../lcreg/SG_and_LM/results

./snap_reg.sh

This time, both position and orientation of the registered image are plausible indi-
cating registration success.

Quantitative evaluation One big advantage of the RIRE data sets is the ex-
istance of ground truth transformations based on fiducial markers [12]. lcreg has
been configured to store the registration result in the same format so that a direct
comparison between ground truth and lcreg result is possible. In order to perform
this comparison, the two text files can be opened in any text editor by typing e.g.

cd ../lcreg/SG_and_LM/results

vim -o RIRE_training_001_ct_to_mr_PD_rectified.transformation \

../../../standard/ct_PD_rectified.standard

Deviations in the colums new_x, new_y, new_z are well below the slice thickness
of 5mm indicating successful registration. Details concerning the file format can be
found at the RIRE home page.

Conclusions Adding SG optimisation at the lowest resolution level resulted in
a successful automatic registration of a MR/CT image pair with significant initial
displacement. Due to the larger capture range of SG descent, the identity transform
could still be used as initial estimate.

4.7 Initialisation based on moments

If the initial translation vector and/or rotation angle exceeds a certain threshold, the
identity transformation can no longer be used as as starting estimate for iterative
optimisation due to limited capture range. However, initial parameters determined
from edge moments can help to automatically register image pairs in many cases.

4.7.1 Example caries

Investigating the initial situation using

cd lcreg_tutorial_data/caries/mhd

itksnap -g pre.mhd -o post.mhd

we see that the initial translation is larger than in the examples discussed so far.
Thus, optimisation starting with a zero translation vector will most likely not con-
verge. However, the orientation of the images is almost identical so we can start with
rotation angles of zero. Rather than finding the initial translation vector manually,
we use grey value edge moments to automatically determine starting estimates for
optimisation.

http://insight-journal.org/rire

lcreg 0.1.2, Peter Rösch 23

Setting up the parameter file The relevant settings for this example are

[transformation]

...

initialise_from_edge_moments = True

initialise_shift_only = True

...

[simple_gradient]

active = False

...

where the initialisation from edge moments is enabled in the transformation section.
Furthermore, only the translation (shift) is initialised automatically so that initial
rotation angles are set to zero. Finally, SG optimisation is disabled.

Starting lcreg The actual registration is started by typing

cd ../ini

lcreg caries.ini

Registration takes about 19 seconds on a notebook computer with a 2.6 GHz dual
core Intel c© Core c© i5-3320M CPU.

Assessing registration results Overlaying the images in itksnap with

cd ../lcreg/caries/results

./snap_reg.sh

indicates that registration was successful.

Exercise Modify the file caries.ini so that initialisation via edge moments is
disabled. Verify that registration fails even if SG optimisation is switched on.

Conclusions In the presence of large initial translations, initialisation via edge
moments allows for automatic registration in many cases. Furthermore, as only
corresponding edges are used for registration, the method works even if anatomical
structures are absent in one image due to preparation or resection.

4.7.2 Example preparation post to pre

If initial translation and rotation are substantial, starting estimates for both can be
determined automatically using edge moments. However, if image contents differ
e.g. due to preparation or different image sections, SG optimisation needs to be
applied at the lowest resolution level.

lcreg 0.1.2, Peter Rösch 24

Image overlay prior to registration Comparing the original images

cd lcreg_tutorial_data/preparation/mhd

itksnap -g pre.mhd -o post.mhd

reveals that the images are not only shifted but also rotated. Furthermore cavities
are present in the post image only.

Setting up the parameter file The relevant changes with respect to the pre-
vious example are

[transformation]

...

initialise_from_edge_moments = True

initialise_shift_only = False

...

[simple_gradient]

active = True

delta_v_initial = 4

delta_v_min = 0.25

In this case, not only translation (shift) but also rotation is initialised from edge
moments. SG descent is enabled for the lowest resolution level.

Starting lcreg The actual registration is started by typing

cd ../ini

lcreg post_to_pre.ini

Registration takes about 17 seconds on a notebook computer with a 2.6 GHz dual
core Intel c© Core c© i5-3320M CPU.

Assessing registration results
Analysing the log file lcreg/post_to_pre/results/lcreg.log shows that the ini-
tial transform derived from edge moments (line 75)

2019-01-17 18:50:15,217 - DEBUG: initial euler angles (deg):

[18.16909784 12.52004392 67.12175554]

2019-01-17 18:50:15,217 - DEBUG: initial translation vector:

[14.05692041 -2.96317919 -0.71906692]

is pretty close to the final transform after optimisation (line 191)

2019-01-17 18:50:18,035 - DEBUG: final euler angles (deg):

[17.46343155 11.98068923 66.5885782]

2019-01-17 18:50:18,035 - DEBUG: final translation vector:

[14.08773353 -2.93067429 -0.74523916]

lcreg 0.1.2, Peter Rösch 25

An overlay of transformed images

cd ../lcreg/post_to_pre/results

./snap_reg.sh

indicates successful 3D registration. Note that registration is impaired by imaging
artifacts in the cusp area. These artifacts result from unwanted sample motion during
image acquisition.

Conclusion Even in the presence of substantial initial mismatch and image differ-
ences due to preparation or resection, automatic registration is possible by combining
initialisation via edge moments and SG descent optimisation at the lowest resolution
level. However, imaging artifacts affected registration accuracy in this case.

4.8 Manual initialisation using ITK-SNAP

If the contents of the two images to be registered differ significantly due to resec-
tion or preparation, initial estimates based on edge moments may be located outside
the capture range of the optimisation so that registration fails to converge. In these
cases, the initial estimate can not be determined automatically. However, valid start-
ing estimates can be derived from a set of corresponding anatomical landmarks [1].
Alternatively, ITK-SNAP provides a tool for 3D image registration featuring both an
automatic and a manual mode [3]. Although ITK-SNAP requires the images to fit
into memory, downsampled versions of large data sets can be used perform rough
interactive alignment. Then, the transformation matrix can be stored to disk and
used as initial estimate for lcreg.
Care must be taken to keep the geometry of the downsampled images, in particular
the origins, consistent with modified voxel dimensions.

4.8.1 Example veneer post to pre

Figure 2 shows overlaid µCT images of a tooth before and after preparation for a
veneer. Note that preparation involved both shortening of the tooth and enamel
removal. Furthermore, the two images show the tooth at different positions and
orientations. In order to manually determine valid starting estimates, the images
are loaded into ITK-SNAP

cd lcreg_tutorial_data/veneer/mhd

itksnap -g pre.mhd -o post.mhd

Registration is chosen from the Tools menu and the mode is set to Manual as
shown in figure 3 on page 27. Clicking at the white circle in the top left image, the
post image is rotated by about -25◦. Afterwards, we click into the top left view at
the center of the tooth to be moved, hold down the left mouse button and drag the
tooth to the top by about 5 mm and to the right by about 0.6 mm. Then, we select
the top right view and shift the tooth upwards by about 1.4 mm. The resulting
view should be similar to figure 4 on page 28. Finally, the matrix representing our

lcreg 0.1.2, Peter Rösch 26

Figure 2: Overlay of veneer pre and post images with ITK-SNAP

transformation needs to be saved to disk. In order to achieve this, we click on the
disk symbol at the bottom of the registration tab and select the file format Convert
3D Transform Files. Using the button Browse we can select the directory ../ini

and overwrite the existing file veneer post pre.mat. A copy of the initial file named
veneer post pre backup.mat is provided so that the original state can be restored.
After the file has been saved, ITK-SNAP can be closed.

Setting up the parameter file In order to use the stored transformation as
starting estimate, parameters in the transform section need to be set as follows:

[transformation]

...

initial_transformation_file_name = veneer_post_pre.mat

initial_transform_is_RAS = True

initial_transform_is_inverted = False

initialise_from_edge_moments = False

lcreg 0.1.2, Peter Rösch 27

Figure 3: Veneer pre and post images prior to manual alignment.

...

Starting lcreg The actual registration is started by typing

cd ../ini

lcreg veneer_post_to_pre.ini

Registration takes about 17 seconds on a notebook computer with a 2.6 GHz dual
core Intel c© Core c© i5-3320M CPU.

Assessing registration results An overlay of the images after registration can
be created by typing

cd ../lcreg/post_to_pre/results

./snap_reg.sh

Results indicate succesful registration. Note that cracks within the dentine area are
wider in the post image than in the pre image. A possible reason for this is sample
dehydration.

lcreg 0.1.2, Peter Rösch 28

Figure 4: Veneer pre and post images after manual alignment.

Exercise Verify that an initialisation based on edge moments does not result in
successful registration using the corresponding parameter file provieded in the ini

directory.

Conclusions Using the manual registration feature of ITK-SNAP, to create an
initial esitmate for the transformation matrix, two images of a tooth before and
after preparation could be successfully registered dispite the significant large initial
misalignment, the removal of enamel and the widening of cracks in the course of
preparation.

4.9 Applying binary masks

Registration using lcreg is based on the alignment of edges, i.e. image regions with
large local grey value gradients. The underlying assumption is that these edges cor-
respond to borders between meaningful anatomical structures. It follows that edges
originating from noise or non-anatomical structures like patient tables or sample hold-
ers can disturb the registration process. This unwanted interference can be avoided
by excluding disturbing image parts from registration using binary masks. Note

lcreg 0.1.2, Peter Rösch 29

that following the masking operation based on the binary image, the usual selection
criteria controlled by the gradient magnitude fraction and grey masking range

settings are still applied.

4.9.1 Example root canal treatment

The images to be registered show a tooth at different stages of root canal treatment.
From an overlay of the images using

cd lcreg_tutorial_data/root_canal_treatment/mhd

itksnap -g pre.mhd -o post.mhd

three conclusions can be drawn:

1. The initial displacement is small.

2. The restoration takes up a small fraction of the pre and a significant fraction
of the post image.

3. Due to inhomogeneities, spurious edges are visible in the restoration area.

Thus, it appears sensible to exclude the restoration from registration by masking.
Two positive masks have been created by first segmenting the restorations using
ITK-SNAP and then inverting the resulting binary image followed by a morphological
erosion to exclude restoration borders. The resulting masks can be visualised as
follows:

itksnap -g pre.mhd -s pre_mask.mhd

itksnap -g post.mhd -s post_mask.mhd

Setting up the parameter file First of all, the mask images are included:

[DEFAULT]

...

fixed_mask_image_name = ${image_directory}/pre_mask.mhd

moving_mask_image_name = ${image_directory}/post_mask.mhd

...

As the initial displacement is small, no SG optimisation step is required.

[simple_gradient]

active = False

...

Starting lcreg The actual registration is started by typing

cd ../ini

lcreg root_canal_treatment.ini

Registration takes about 13 seconds on a notebook computer with a 2.6 GHz dual
core Intel c© Core c© i5-3320M CPU.

lcreg 0.1.2, Peter Rösch 30

Assessing registration results An overlay of the images after registration

cd ../lcreg/root_canal_treatment/results

./snap_reg.sh

shows that registration was successful. We can also investigate difference images
before and after registration using the commands given below. Note that the sizes of
the unregistered images do not agree so that a c3d -reslice-identity operation needs
to be performed prior to voxel-by-voxel image subtraction.

c3d ../../../mhd/pre.mhd ../../../mhd/post.mhd \

-reslice-identity -type ushort -o tmp.mhd

abs_difference_mhd ../../../mhd/pre.mhd \

tmp.mhd abs_diff_unreg.mhd

rm tmp.mhd tmp.raw

abs_difference_mhd ../../../mhd/pre.mhd \

resampled_moving_image_scipy.mhd abs_diff_reg.mhd

itksnap -g abs_diff_unreg.mhd -o abs_diff_reg.mhd

Exercise In order to compare results with and without binary mask, repeat the
experiment with the configuration file root canal treatment no mask.ini. In this
case, registration results are very similar as only corresponding edges contribute to
the similarity measure so that the restoration for which no corresponding edges are
present in the pre image does not contribute significantly.

Conclusions In cases where edges originating from non-anatomical structures are
present, binary masks can be used to make sure that only relevant image parts
influence the registration results.

4.10 Affine transformations

Although the main application area of lcreg is rigid registration with six parameters,
the software also allows for affine (i.e. twelve-parameter) registration including scale
and shear. This type of transform is frequently used as an intermediate step for
elastic registration.

4.10.1 Example atlas affine

In this example, an MR T1 atlas image is registered to a simulated T1 image of the
brain. The affine registration which is modified to optimise the similarity measure is
only an approximation of the “real” transform which is elastic. Thus, the convergence
of LM optimisation scheme is expected to be slower than for rigid or “really” affine
transformations. Due to the larger number of parameters, an initial SG descent is not
feasible for affine registration. Thus, a valid initial estimate needs to be determined
either from a rigid preregistration, a set of corresponding landmarks or by manually
aligning the images using e.g. ITK-SNAP. Note that an initialisation based on edge
moments is not supported for affine registration. Here, the atlas image has been
shifted manually to the centre of the brain in the T1 image as shown in figure 5.

https://sourceforge.net/p/c3d/git/ci/master/tree/doc/c3d.md#-reslice-identity-resample-image-using-identity-transform

lcreg 0.1.2, Peter Rösch 31

Figure 5: Atlas and T1 image after manual alignment.

Setting up the parameter file The transformation type is set to affine and
the initial transform is read from a file:

[transformation]

...

transformation_type = affine

initial_transformation_file_name = atlas_affine.mat

...

[levenberg_marquardt]

...

initial_lambda = 1

lambda_upscale_factor = 1.1

lambda_downscale_factor = 0.9

...

In this case, elastic deformation is approximated by an affine transform, so strictly
speaking, the preconditions for LM optimisation are not met. Starting with a lambda

value of 1 and using upscale and downscale factors close to 1, the relative weight
between gradient descent and Gauss-Newton optimisation does not change as rapidly
as in the other examples where lambda changed by an order of magnitude with each

lcreg 0.1.2, Peter Rösch 32

step.

Starting lcreg The actual registration is started by typing

cd ../ini

lcreg atlas_affine.ini

Registration takes about 71 seconds on a notebook computer with a 2.6 GHz dual
core Intel c© Core c© i5-3320M CPU.

Assessing registration results Investigating an overlay after registration using

cd ../lcreg/atlas_affine/results

itksnap -g ../../../mhd/brainWebT1.mhd \

-o resampled_moving_image_scipy.mhd

shows that although the differences are less prominent than in figure ?? on page ??,
the agreement between fixed and transformed moving image is worse than in the other
examples. The reason for this is that the transformation applied for registration is
only an approximation of the “real” elastic deformation as described above.

Conclusions Starting from manually pre-aligned images, optimisation of 1-LCC
with respect to an affine transformation converged and the agreement between fixed
and transformed moving image could be improved. However, as a elastic transform
is required to accurately describe the relationship between images, only a part of the
differences could be compensated for by affine registration.

5 How to cite lcreg

When referencing lcreg, please include a bibliographic reference to [2].

6 Acknowledgements

Many thanks to Karl-Heinz Kunzelmann for his support, many helpful discussions
and for making dental test images available. This work benefited from the use of
ITK-SNAP, an open-source software for image segmentation and visualisation. The
University of Applied Sciences, Augsburg, in particular the Faculty of Computer
Science supported this project by granting a sabbatical leave. Special thanks to
Gisela Dachs, Andreas Gärtner, Evi Köbele, Stefan König, Dominik Lüder, Thomas
Obermeier and Sigrid Podratzky for acquiring images and for keeping computers up
and running.

lcreg 0.1.2, Peter Rösch 33

References

[1] J. V. Hajnal, D. L. G. Hill, D. J. Hawkes (Eds.): Medical Image Registration,
CRC Press (2001)

[2] P. Rösch, K.-H. Kunzelmann: Efficient 3D rigid Registration of large micro CT
Images. International Journal of Computer assisted Radiology and Surgery 13
(Suppl. 1) (2018) 118–119

[3] P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee,
G. Gerig: User-guided 3D active contour segmentation of anatomical structures:
Significantly improved efficiency and reliability. Neuroimage 31 (2006) 1116–
1128. http://www.itksnap.org

[4] S. Kabus, T. Netsch, B. Fischer, J. Modersitzki: B-Spline Registration of 3D Im-
ages with Levenberg-Marquardt Optimization. Proceedings of SPIE 5370 (2004),
304-313

[5] P. Rösch, T. Blaffert, J. Weese: Multi-Modality Image Registration using Local
Correlation. In: H. U. Lemke, M. W. Vannier, K. Inamura, A. G. Farman (Eds.):
Proceedings of CARS’99, Elsevier Science (1999) 228-232

[6] C. Studholme, D. L. G. Hill, D. J. Hawkes: Automated 3-D registration of MR
and CT images of the head. Med. Image Anal. 1 (1996) 163–175

[7] https://www.cython.org.

[8] F. Alted et al.: bcolz documentation. http://bcolz.blosc.org (2019)

[9] https://www.scipy.org

[10] T. Netsch, P. Rösch, A. v. Muiswinkel, J. Weese: Towards Real-Time Multi-
Modality 3-D Medical Image Registration. Eight IEEE International Conference
on Computer Vision, ICCV 2001, 718-725

[11] A. Ranganathan: The Levenberg-Marquardt Alogoritm. http://www.ananth.

in/docs/lmtut.pdf

[12] J. West, J. Fitzpatrick et al: Comparison and Evaluation of Retrospective In-
termodality Brain Image Registration Techniques. Journal of Computer Assisted
Tomography 21 (1997) 554–568.

http://www.itksnap.org
https://www.cython.org
http://bcolz.blosc.org
https://www.scipy.org
http://www.ananth.in/docs/lmtut.pdf
http://www.ananth.in/docs/lmtut.pdf

	3D Image Registration with lcreg
	Distinguishing features of lcreg
	Processing steps
	Building blocks and implementation
	Command line executables

	Installation
	Installing lcreg
	Additional software: ITK-SNAP and c3d

	Configuration Files – Sections and Options
	DEFAULT
	transformation
	masking
	multiresolution
	compression
	levenberg_marquardt
	simple_gradient
	output

	Tutorial
	How to benefit from this tutorial
	Setup
	Conventions
	Compatibility testing
	Direct Levenberg-Marquard (LM) optimisation
	Combination with simple gradient (SG) optimisation
	Initialisation based on moments
	Manual initialisation using ITK-SNAP
	Applying binary masks
	Affine transformations

	How to cite lcreg
	Acknowledgements
	References

