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Preface

“One of the comforting things about old memories is their tendency to

take on a rosy glow. The memory fixes on what was good and what

lasted, and on the joy of helping to create the improvements that made life

better.”

Dennis Ritchie, “The Evolution of the Unix Time-sharing System,”

October 1984

Since its creation in a Bell Labs attic in 1969, the Unix operating system

has spread far beyond anything that its creators could possibly have imag-

ined. It has led to the development of much innovative software, influenced

myriad programmers, and changed the entire path of computer technology.

Unix and its derivatives aren’t widely known outside a particular technical

community, but they are at the heart of any number of systems that are part of

ev eryone’s world. Google, Facebook, Amazon, and plenty of other services

are powered by Linux, a Unix-like operating system that I’ll talk about later

on. If you have a cell phone or have a Mac, it runs some version of Unix. If

you have gadgets like Alexa at home or navigation software in your car,

they’re powered by Unix-like systems too. If you’re bombarded by advertis-

ing whenever you browse the web, Unix systems are behind it, and of course

the tracking that knows what you’re doing so you can be more accurately

bombarded is likely to be based on Unix as well.

Unix was created more than 50 years ago by two people, along with a

small group of collaborators and camp followers. Through a sequence of

lucky accidents, I was present at the creation, though certainly not responsi-

ble for any of it. At most I can take credit for a modest amount of useful

software and, thanks to first-rate co-authors, some books that have helped
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people to learn more about Unix and its languages, tools and philosophy.

This book is part history and part memoir, a look at the origins of Unix

and an attempt to explain what Unix is, how it came about, and why it mat-

ters. The book is certainly not a scholarly work, however—there are no foot-

notes—and it has become less history and more memoir than I had originally

planned.

The book is written for anyone with an interest in computing or the his-

tory of inventions. It includes a certain amount of technical material, but I’ve

tried to provide sufficient explanation that even if you don’t hav e much back-

ground, you can appreciate the basic ideas and see why they might be impor-

tant. You can safely skip over anything that seems too complicated, however,

so there’s no need to read every word. If you are a programmer, some of the

explanations may seem pretty obvious and over-simplified, but with luck

some of the historical insights will be useful, and the stories that go with it

might be new and interesting to you.

Although I have tried to be accurate, there are sure to be places where my

memory is imperfect. Furthermore, the interviews, personal reminiscences,

oral histories, books and papers that I’ve relied on are not always consistent

with my own memories or with each other in their accounts of who did what

and when.

Fortunately, many of those involved in the early days are still alive and

have helped to straighten me out. They too may suffer from memory lapses

and rose-colored glasses but any errors that remain are my fault, at least until

I can safely blame them on someone else.

My main purpose in writing is to tell some of the wonderful stories of an

especially productive and formative time in the history of computing. It’s

important to understand the evolution of the technology that we use and take

for granted. The decisions that shaped how that technology developed and

thus defined the paths that we took were made by real people, working under

the pressures and constraints of the time. The more we know about the his-

tory, the more we can appreciate the inventive genius that led to Unix and

perhaps better understand why modern computer systems are as they are. If

nothing else, choices that might seem wrong-headed or perverse today can

often be seen as natural consequences of what was understood and could be

accomplished with the resources available at the time.

The story is about more than just the Unix operating system, though that’s

the core. It also includes the C programming language, one of the most

widely used of all languages, and at the heart of the systems that run the

Internet and the services that use it. Other languages began life at Bell Labs

with Unix too, notably C++, which is also widely used. Microsoft Office
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tools like Word, Excel or Powerpoint are written in C++, as are most of the

browsers you might be using. A dozen or two of the core tools that program-

mers use daily and simply take for granted were written in the early days of

Unix and are still part of every programmer’s toolkit, often much the same as

they were 40 or 50 years ago.

Computer science theory plays a vital role as well, often enabling

immensely practical tools. Hardware research explored design tools, inte-

grated circuits, computer architecture, and unusual special-purpose devices.

The interplay among all of these activities often led to unexpected inventions,

and was one of the reasons why the whole enterprise was so productive

across so many different fields.

There is also an interesting and relevant story about how technological

innovation happens. Bell Labs, where Unix began, was a remarkable institu-

tion that produced many good ideas and capitalized on them. It was the ori-

gin of many world-changing inventions, and there are lessons to be learned

from how it worked.

The Unix story certainly offers many insights into how to design and

build software, and how to use computers effectively, which I have tried to

highlight along the way. As a simple but characteristic example, the Unix

philosophy of software tools made it possible to combine existing programs

to accomplish a wide variety of tasks without having to write new software.

It’s a programming instance of an old strategy: divide and conquer. By

breaking bigger tasks into smaller ones, each one becomes more manageable,

and the pieces can be combined in unexpected ways.

Finally, although Unix was the most visible software from Bell Labs, it

was by no means the only contribution to computing. The Computing Sci-

ence Research Center, the fabled “Center 1127,” or just “1127,” was unusu-

ally productive for two or three decades. Its work was inspired by Unix and

used Unix as a base, but the contributions go well beyond that. Members of

1127 wrote important books that for years have been core texts in computer

science and references for programmers. Center 1127 was an exceptionally

influential industrial computer science research laboratory, one of the most

productive of comparably sized groups at the time or subsequently.

Why was Unix and the surrounding environment so successful? How did

a two-person experiment grow into something that literally changed the

world? Was this a singular event, so unlikely that nothing like it could ever

happen again? On the larger question of whether such influential results can

be planned, I’ll say more at the end of the book. For now, it seems to me that

Unix owes its success to an accidental combination of factors: two excep-

tional people, an excellent supporting cast, talented and enlightened
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management, stable funding in a corporation that took a very long view, and

an unfettered environment for exploration no matter how unconventional. Its

adoption was facilitated by rapidly advancing technology where hardware

kept getting smaller, cheaper and faster at an exponential rate.

The early years of Unix were for me and many others at Bell Labs won-

drously productive and fun. I hope that this book will help you sense some

of the joy of creation, and indeed of making life better, that Dennis Ritchie

described in the epigraph above.
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Chapter 1

Bell Labs

“One Policy, One System, Universal Service”

AT&T’s mission statement, 1907

“At first sight, when one comes upon it in its surprisingly rural setting, the

Bell Telephone Laboratories’ main New Jersey site looks like a large and

up-to-date factory, which in a sense it is. But it is a factory for ideas, and

so its production lines are invisible.”

Arthur Clarke, Voice Across the Sea, 1974

quoted in The Idea Factory by Jon Gertner, 2012

To understand how Unix happened, we have to understand Bell Labs,

especially how it worked and the creative environment that it provided.

AT&T, the American Telephone and Telegraph Company, grew out of

combining a host of local telephone companies from across the United

States. Early in its history, AT&T realized that it needed a research organiza-

tion that would systematically address the scientific and engineering prob-

lems that the company encountered as it tried to provide a national telephone

system. In 1925, it created a research and development subsidiary, Bell Tele-

phone Laboratories, to attack these problems. Although the full name was

regularly abbreviated to Bell Labs or BTL or merely “the Labs,” telephony

was always the central concern.

Bell Labs was originally located at 463 West Street in New York City, but

at the beginning of the Second World War, many of its activities moved out

of New York. AT&T was heavily involved in the war effort, providing exper-

tise on a wide variety of important military problems—communications sys-

tems, of course, but also fire-control computers for anti-aircraft guns, radar,

and cryptography. Part of this work was done in suburban and rural New



2 CHAPTER 1: BELL LABS

Figure 1.1: From New York City to Murray Hill, New Jersey
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Jersey, 20 miles (33 km) west of New York. The largest site was in an area

called Murray Hill, which was part of the small towns of New Providence

and Berkeley Heights.

Figure 1.1 shows the general lay of the land; 463 West Street is on the

Hudson River, a short distance north of the 9A highway marker. Bell Labs at

Murray Hill straddles the boundary between New Providence and Berkeley

Heights, just north of Interstate 78. Both locations are marked on the map

with dots.

More and more Bell Labs activities shifted to Murray Hill, and the Labs

left West Street entirely in 1966. By the 1960s, Murray Hill housed over

3,000 people, at least 1,000 with PhDs in technical fields like physics, chem-

istry, mathematics, and various flavors of engineering.

Figure 1.2 is an aerial photo of the Murray Hill complex in 1961. There

were three main buildings. Building 1 is to the lower right in the picture, 2 is

to the upper left, and 3 is the square one with an open courtyard. Before it

was blocked by the addition of two new buildings in the 1970s, there was a

single uninterrupted quarter-mile (400 m) corridor from one end of Building

1 to the other end of Building 2.

I spent over 30 years in Building 2, from an internship in 1967 until I

retired in 2000. My offices were in the side wings marked with dots, on the

fifth (top) floor. For future reference, Stair 9 in this picture is at the absolute

far end of Building 2, and Stair 8 is one wing closer to the center. For most

of the early years, the Unix room was in the sixth floor attic between stair-

ways 8 and 9.

Figure 1.3 shows a Google satellite image of Bell Labs in 2019. Build-

ings 6 (towards the lower left, with the marker) and 7 (towards the upper

right) were added in the early 1970s, and for some years after 1996, Building

6 was the headquarters of Lucent Technologies. It’s intriguing how much

corporate history is captured in the labels that Google has assigned: “Bell

Labs” as a marker, Lucent Bell Labs on the exit driveway, Alcatel-Lucent

Bell Labs on the entry, and Nokia Bell Labs at the apex of the managerial

pyramid in Building 6.

I’m not qualified to write a detailed history of the Labs, but fortunately

that’s already been done well by other writers. I particularly like Jon Gert-

ner’s The Idea Factory, which focuses on the physical sciences, and James

Gleick’s The Information is excellent for information science. The volumi-

nous (seven volumes and nearly 5,000 pages) official Bell Labs publication

called A History of Science and Engineering in the Bell System is thorough,

authoritative, and in my sampling, always interesting.
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Figure 1.2: Bell Labs in 1961 (Courtesy of Bell Labs)
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1.1 Physical sciences at Bell Labs

During its early years, most research at Bell Labs involved physics, chem-

istry, materials, and communications systems. Researchers had exceptional

freedom to pursue their own interests, but the environment was so rich in rel-

evant problems that it wasn’t hard to explore in areas that were both scientifi-

cally interesting and potentially useful to the Bell System and to the world at

large.

Bell Labs was responsible for a remarkable number of scientific and tech-

nological advances that changed the world. Foremost among them was the

transistor, inv ented in 1947 by John Bardeen, Walter Brattain and William

Shockley, who were trying to improve amplifiers for long-distance telephone

circuits. The transistor resulted from fundamental research into the proper-

ties of semiconductor materials, driven by a need for devices that would be

more physically robust and less energy-hungry than vacuum tubes, which in

the 1940s were the only way to make communications equipment and, inci-

dentally, to build the earliest computers.

The invention of the transistor was recognized with a Nobel Prize in

physics in 1956, one of nine Nobel prizes that have been awarded to scien-

tists for work done at least in part at Bell Labs. Other major inventions

included negative feedback amplifiers, solar cells, lasers, cell phones, com-

munications satellites and charge-coupled devices (which make the camera in

your phone work).

Very roughly, in the 1960s through 1980s there were 3,000 people in the

research area of Bell Labs (mostly at Murray Hill), and 15,000 to 25,000 in

development groups in multiple locations that designed equipment and sys-

tems for the Bell System, often using results from the research area. That’s a

lot of people. Who paid for them all?

AT&T was effectively a monopoly, since it provided telephone service to

most of the United States, but its ability to exploit its monopoly power was

constrained. It was regulated by federal and state bodies that controlled the

prices that it could charge for its various services, and it was not allowed to

enter businesses that were not directly related to providing telephone ser-

vices.

This regulatory regime worked well for many years. AT&T was required

to provide service to everyone (“universal service”) no matter how remote or

unprofitable. As compensation, it got a stable and predictable overall rate of

return.

As part of this arrangement, AT&T directed a small fraction of its revenue

to Bell Labs, with the express purpose of improving communications
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Figure 1.3: Bell Labs in 2019; Building 6 is towards the lower left
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services. In effect, Bell Labs was paid for by a modest tax on every phone

call in the country. According to a paper by A. Michael Noll, AT&T spent

about 2.8 percent of its revenues on research and development, with about

0.3 percent on basic research. I’m not sure how well this would work today,

but for decades, the arrangement led to a steady flow of improvements to the

phone system and a significant number of fundamental scientific discoveries.

Stable funding was a crucial factor for research. It meant that AT&T

could take a long-term view and Bell Labs researchers had the freedom to

explore areas that might not have a near-term payoff and perhaps never

would. That’s a contrast with today’s world, in which planning often seems

to look ahead only a few months, and much effort is spent on speculating

about financial results for the next quarter.

1.2 Communications and computer science

Bell Labs was naturally a pioneer in designing, building and improving

communications systems, a blanket term that covered everything from the

design of consumer hardware like telephones through to the infrastructure of

switching systems, microwave transmission towers, and fiber optic cables.

Sometimes this breadth of practical concerns could even lead to advances

in basic science. For example, in 1964 Arno Penzias and Robert Wilson

were trying to figure out what was causing unwanted noise in the antenna

that Bell Labs was using to detect radio signals bounced off Echo balloon

satellites. They eventually deduced that the noise came from the background

radiation that was the residue of the cosmic Big Bang at the beginning of the

universe. This discovery led to the 1978 Nobel Prize in physics for Penzias

and Wilson. (Arno says that “Most people get Nobels for things they were

looking for. We got one for something we were trying to get rid of.”)

Another part of the Bell Labs mission was to develop a deep mathematical

understanding of how communications systems worked. The most important

result was Claude Shannon’s creation of information theory, which was in

part motivated by his study of cryptography during World War II. His 1948

paper “A Mathematical Theory of Communication,” published in the Bell

System Technical Journal, explained the fundamental properties and limita-

tions on how much information could be sent through a communications sys-

tem. Shannon worked at Murray Hill from the early 1940s to 1956, then

returned to teach at MIT, where he had been a graduate student. He died in

2001 at the age of 84.

As computers became more powerful and less expensive, computer use

expanded to include more data analysis, along with extensive modeling and
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simulation of physical systems and processes. Bell Labs had been involved

with computers and computing since the 1930s, and had computer centers

with big central computers by the late 1950s.

In the early 1960s, a computer science research group was formed by

splitting some people out of mathematics research, along with some of the

staff who operated the large central computer at Murray Hill. The resulting

amalgam was called the Computing Science Research Center, and although

for a brief period it still ran computer services for all of Murray Hill, it was

part of the research division, not a service function. In 1970 the group that

managed the computer facilities was moved into a separate organization.

1.3 BWK at BTL

This section contains a fair amount of personal history, which I hope will

give you some idea of the lucky accidents that led me to computing as a

career, and to Bell Labs as an unequaled place to pursue it.

I was born in Toronto, and went to the University of Toronto. I was in a

program called Engineering Physics (later renamed to Engineering Science),

a catch-all program for those who didn’t really know what they wanted to

focus on. I graduated in 1964, which was in the early days of computing: I

saw my first computer when I was in my third year at university. There was

only one big computer for the whole university, an IBM 7094, which was

pretty much top of the line. It had 32K (32,768) 36-bit words of magnetic

core memory (today we would say 128K bytes), and some secondary storage

in the form of big mechanical disk drives. It cost literally three million US

dollars at the time and it lived in a large air-conditioned room, tended by pro-

fessional operators; ordinary people (and especially students) did not get any-

where near it.

As a result, I did little computing as an undergraduate, though I did try to

learn the Fortran programming language. For anyone who has ever struggled

to write their first program, I can sympathize. I studied Daniel McCracken’s

excellent book on Fortran II and had the rules down pat, but I couldn’t figure

out how to write that first program, a conceptual barrier that many people

seem to encounter.

In the summer before my final year of college, I landed a job at Imperial

Oil in Toronto, in a group that developed optimization software for refineries.

(Imperial Oil was partly owned by Standard Oil of New Jersey, which

became Exxon in 1972.)

In retrospect, I was well below average as an intern. I spent the entire

summer trying to write a giant Cobol program for analyzing refinery data. I
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don’t recall its precise purpose, but I know for sure that it never worked. I

didn’t really know how to program, Cobol provided little support for good

program organization, and structured programming had not been invented, so

my code was an endless series of IF statements that branched off somewhere

to do something once I had figured out what that something should be.

I also tried to get Fortran programs running on Imperial’s IBM 7010,

since I sort of knew Fortran, certainly better than I knew Cobol, and Fortran

would have been better suited for data analysis. It was only after weeks of

fighting JCL, IBM’s Job Control Language, that I deduced that there was no

Fortran compiler on the 7010, but the JCL error messages were so inscrutable

that no one else had figured that out either.

When I returned to school for my senior year after this somewhat frustrat-

ing summer, I was still strongly interested in computing. There were no for-

mal courses on computer science, but I did write my senior thesis on artificial

intelligence, a hot topic at the time. Theorem provers, programs to play

chess and checkers, and machine translation of natural languages all seemed

like they were within reach, just requiring a bit of programming.

After graduating in 1964, I had no clue what to do next, so like many stu-

dents I put off the decision by going to graduate school. I applied to half a

dozen schools in the United States (not common among Canadians at the

time), and by good luck was accepted by several, including MIT and Prince-

ton. Princeton said that the normal time to complete a PhD was three years,

while MIT said it would probably take sev en years. Princeton offered a full

fellowship; MIT said I would have to be a research assistant for 30 hours a

week. The decision seemed pretty clear-cut, and a good friend, Al Aho, who

had been a year ahead of me at Toronto, was already at Princeton, so off I

went. It turned out to be an incredibly fortunate choice.

In 1966, I got lucky again, with a summer internship at MIT, thanks in

part to the fact that another Princeton grad student, Lee Varian, had done a

great job there in 1965. I spent the summer using CTSS, the Compatible

Time-Sharing System, writing programs in MAD (Michigan Algorithm

Decoder, a dialect of Algol 58) to build tools for a new operating system

called Multics, which we’ll come to in Chapter 2. (Multics was originally

spelled MULTICS, but the lower-case version is less visually jarring; as with

UNIX versus Unix and some other all-caps words, I’ll use the nicer-looking

form even though it’s not historically accurate.)

My nominal boss at MIT was Professor Fernando Corbató, “Corby” to

ev eryone, a wonderful gentleman, the creator of CTSS, and the person in

charge of Multics. Corby won the Turing Award in 1990 for his fundamental

work on time-sharing systems. He died in July 2019 at the age of 93.
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In addition to leading the design and implementation of CTSS and Mul-

tics, Corby was the inventor of passwords for computer access. There had

been little need for such a thing with batch computing, but some security

mechanism was necessary to protect private files on a time-sharing computer

with a shared file system.

I still remember both of the short pronounceable passwords that were

automatically generated for me while I was at MIT in the summer of 1966.

Tw o passwords were needed, not one, because one day during the summer a

mixup caused the file that stored the passwords to be exchanged with the file

that held the login message of the day. Since passwords were stored unen-

crypted, everyone who logged in got to see everyone else’s passwords.

My office, which I remember as being unshared, belonged to Professor

Joseph Weizenbaum, but he was away for the summer. Early in 1966,

Weizenbaum had published a description of Eliza, a program that simulated a

dialog with a Rogerian psychologist. Eliza was one of the first attempts at

using natural language to interact with a computer. It was surprisingly effec-

tive, at least when first encountered, and I enjoyed showing it off to visitors.

There are plenty of Eliza simulators on the web today; it’s still entertaining to

play with them for a few minutes, though their weaknesses quickly become

evident.

ELIZA: Please tell me what’s been bothering you.

YOU: I’m trying to write a book about Unix.

ELIZA: Is it because you are trying to write a book

about unix that you came to me?

YOU: Yes.

ELIZA: You are sure.

YOU: Yes.

ELIZA: You seem to be quite positive.

YOU: Yes.

ELIZA: I see.

In the summer of 1967, I got the ultimate piece of good luck: an intern-

ship at Bell Labs in Murray Hill, in the Computing Science Research Center,

working for Doug McIlroy (Figure 1.4). Doug suggested that I explore some

problem in evaluating memory allocators, one of his long-term interests. In

the best intern tradition, I bumbled around and eventually did something

completely different, creating a library of functions that made it convenient to

do list processing in Fortran programs. I spent the summer writing tight

assembly language for the then-current big computer at Murray Hill, a GE

635, which was in effect a cleaned-up and more orderly IBM 7094, but also a

simpler version of the GE 645 that had been specially designed for Multics.

That’s pretty much the last time I wrote assembly language, but even though
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what I was doing was fundamentally misguided, it was a blast and it hooked

me completely on programming.

Figure 1.4: Doug McIlroy, ∼1981 (Courtesy of Gerard Holzmann)

1.4 Office space

Sometimes geography is destiny.

My office as an intern in 1967 was on the fifth floor of Building 2, on a

corridor off Stair 8. On my first day on the job, I was sitting in my office (the

good old days when even an intern could luck into a private office), wonder-

ing what to do, when an older guy appeared in my doorway at 11AM, and

said “Hi, I’m Dick [unintelligible]. Let’s go to lunch.”

OK, I thought, why not? I don’t remember anything at all about the

lunch, but I do remember that afterwards, Dick [unintelligible] went off

somewhere else, and I sneaked along the corridor to read the name tag on his

door. Richard Hamming! My friendly next-door neighbor was famous, the

inventor of error-correcting codes, and the author of the textbook for a

numerical analysis course that I had just taken.

Dick (Figure 1.5) became a good friend. He was a man of strong opinions

and not afraid to express them, which I think put off some people, but I

enjoyed his company and over the years profited a great deal from his advice.

He was a department head, but there were no people in his department,

which seemed odd. He told me that he had worked hard to achieve this com-

bination of suitable title without responsibility, something that I came to
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appreciate only much later when I became a department head with a dozen

people in my department.

Figure 1.5: Dick Hamming, ∼1975, in his trademark plaid jacket (Wikipedia)

I was there in the summer of 1968 when he learned that he had won the

ACM Turing Award, which today is considered the computer science equiv-

alent of a Nobel prize. Dick’s sardonic reaction: since the Nobel prize was at

that time was worth $100,000 and the Turing award was worth $2,000, he

said that he had won 2 percent of a Nobel prize. (This was the third Turing

aw ard; the first two went to Alan Perlis and Maurice Wilkes, also pioneers of

computing.) Dick was cited for his work on numerical methods, automatic

coding systems, and error-detecting and error-correcting codes.

Dick was the person who started me writing books, which has turned out

to be a good thing. He had a fairly low opinion of most programmers, who

he felt were poorly trained if at all. I can still hear him saying

“We giv e them a dictionary and grammar rules, and we say, ‘Kid,

you’re now a great programmer.’ ”

He felt that programming should be taught as writing was taught. There

should be a notion of style that separated poor code from good code, and pro-

grammers should be taught how to write well and appreciate good style.

He and I disagreed on how this might be accomplished, but his idea was

sound, and it led directly to my first book, The Elements of Programming

Style, which I published in 1974 with P. J. “Bill” Plauger, who was at the

time in the adjacent office. Bill and I emulated Strunk and White’s The
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Elements of Style by showing a sequence of poorly written examples, and

explaining how to improve each of them.

Our first example came from a book that Dick had showed me. He came

into my office one day carrying a numerical analysis text, all up in arms

about how bad the numerical parts were. I saw only an awful chunk of For-

tran:

DO 14 I=1,N

DO 14 J=1,N

14 V(I,J)=(I/J)*(J/I)

If you’re not a Fortran programmer, let me explain. The code consists of

two nested DO loops, both ending at the line which has the label 14. Each

loop steps its index variable from the lower limit to the upper limit, so in the

outer loop I steps from 1 to N, and for each value of I, in the inner loop J

steps from 1 to N. The variable V is an array of N rows and N columns; I

loops over the rows and for each row, J loops over the columns.

This specific pair of loops thus creates an N by N matrix with 1’s on its

diagonal and 0’s everywhere else, like this when N is 5:

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

The code relies on the fact that integer division in Fortran truncates any frac-

tional part, so if I is not equal to J, one of the divisions will produce 0, but if

I equals J (as it does on the diagonal), the result will be 1.

This all seemed way too clever to me, and misplaced cleverness is a bad

idea in programming.

Rewriting it in a straightforward and obvious way leads to a clearer ver-

sion: each time through the outer loop, the inner loop sets every element of

row I to 0, and then the outer loop sets the diagonal element V(I,I) to 1:

C MAKE V AN IDENTITY MATRIX

DO 14 I = 1,N

DO 12 J = 1,N

12 V(I,J) = 0.0

14 V(I,I) = 1.0

This also led to our first rule of programming style:

Write clearly—don’t be too clever.
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Dick retired from Bell Labs in 1976 and went to the Naval Postgraduate

School in Monterey, California, where he taught until his death early in 1998

at the age of 82. The story goes that one of his courses there was known to

students as “Hamming on Hamming,” which suggests an awkward parallel

with this section of the book.

Dick thought hard all the time about what he was doing and why. He

often said that “The purpose of computing is insight, not numbers,” and he

ev en had a tie with that written on it (in Chinese). One of his early insights

was that computing would come to account for half the work at Bell Labs.

None of his colleagues agreed, but in fact his estimate soon proved too con-

servative. He used to say that Friday afternoons were for thinking great

thoughts, so he sat back and thought, though he was always welcoming to

visitors like me at any time.

A few years after his retirement, Dick gav e an insightful talk that distilled

his advice on how to hav e a successful career, called “You and Your

Research,” which you can find on the web. He gav e the first version of that

talk at Bellcore in March 1986; Ken Thompson drove me there so we could

hear it. I’ve been recommending the talk to students for decades—it really is

worthwhile to read the transcript, or to watch one of the video versions.

Right across the hall from me in the summer of 1967 was Vic Vyssotsky

(Figure 1.6), another incredibly smart and talented programmer. Vic was in

charge of the Bell Labs part of Multics, a partner with Corby, but he still

managed to find time to talk almost daily to a lowly intern. Vic pressed me

into teaching a Fortran class to physicists and chemists who needed to learn

how to program. The experience of teaching non-programmers turned out to

be good fun. It got me over any fear of public speaking and made it easy to

get into a variety of teaching gigs later on.

Shortly afterwards, Vic moved to another Bell Labs location where he

worked on the Safeguard anti-missile defense system. He eventually

returned to Murray Hill and became the executive director responsible for

computer science research, and thus was my boss a couple of levels up.

By the spring of 1968, I had started to work on a problem for my PhD

thesis, one suggested by my advisor, Peter Weiner. The problem was called

graph partitioning: giv en a set of nodes connected by edges, find a way to

separate the nodes into two groups of equal size such that the number of

edges that connect a node in one group to a node in the other group is as

small as possible. Figure 1.7 shows an example: any other partition of the

nodes into two groups of five requires more than two edges between the two

sets.
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Figure 1.6: Vic Vyssotsky, ∼1982 (Courtesy of Bell Labs)
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Figure 1.7: Graph partitioning example

This was ostensibly based on a practical problem: how to assign parts of a

program to memory pages such that when the program was run, the amount

of swapping of program pages into and out of memory would be minimized.

The nodes represented blocks of code, the edges represented possible transi-

tions from one block to another, and each edge could have a weight that mea-

sured the frequency of the transition and thus how costly it would be if the

two blocks were in different pages.

It was an artificial problem in a way, but it was a plausible abstraction of

something real, and there were other concrete problems that shared this

abstract model. For example, how should components be laid out on circuit

boards to minimize the expensive wiring that connected one circuit board to

another? Less plausibly, how might we assign employees to floors of a build-

ing to keep people on the same floor as the people they talk to most often?
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This was enough justification for a PhD thesis topic, but I wasn’t making

much progress. When I returned to the Labs for a second internship in the

summer of 1968, I described the problem to Shen Lin (Figure 1.8), who had

recently developed the most effective known algorithm for the classic Travel-

ing Salesman problem: given a set of cities, find the shortest route that visits

each city exactly once, and then returns home.

Shen came up with an approach for graph partitioning that looked promis-

ing, though there was no assurance that it would produce the best possible

answers, and I figured out how to implement it efficiently. I did experiments

on a large number of graphs to assess how well the algorithm worked in prac-

tice. It seemed highly effective, but we never discovered a way to guarantee

an optimum solution. I also found a couple of interesting special-case graphs

where I could devise algorithms that were both fast and guaranteed to pro-

duce optimal solutions. The combination of results was enough for a thesis,

and by the end of the summer I had everything I needed. I wrote it up over

the fall, and had my final oral exam late in January 1969. (Princeton’s opti-

mistic estimate of three years had turned into four and a half.)

A week later, I started work in the Computing Science Research Center at

Bell Labs. I nev er had an interview; the Labs sent me an offer sometime in

the fall, though with a caveat: my thesis had to be finished. Sam Morgan, the

director of the Center and thus my boss two lev els up, told me, “We don’t

hire PhD dropouts.” Finishing the thesis was definitely a good thing; I got

another letter in December saying that I had received a substantial raise, well

before I reported for work!

As an aside, although Shen and I didn’t know it at the time, there was a

reason why we were unable to find an efficient graph-partitioning algorithm

that would always find the best possible answer. Others had been puzzling

over the inherent difficulty of combinatorial optimization problems like graph

partitioning, and had discovered some interesting general relationships.

In a remarkable 1971 result, Stephen Cook, a mathematician and com-

puter scientist at the University of Toronto, showed that many of these chal-

lenging problems, including graph partitioning, are equivalent, in the sense

that if we could find an efficient algorithm (that is, something better than try-

ing all possible solutions) for one of them, that would enable us to find effi-

cient algorithms for all of them. It’s still an open problem in computer sci-

ence whether such problems are truly hard, but the betting is that they are.

Cook received the 1982 Turing Award for this work.

When I got to Bell Labs as a permanent employee in 1969, no one told me

what I should work on. This was standard practice: people were introduced

to other people, encouraged to wander around, and left to find their own
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Figure 1.8: Shen Lin, ∼1970 (Courtesy of Bell Labs)

research topics and collaborators. In retrospect, this seems like it must have

been daunting, but I don’t recall any concern on my part. There was so much

going on that it wasn’t hard to find something to explore or someone to work

with, and after two summers I already knew people and some of the current

projects.

This lack of explicit management direction was standard practice.

Projects in 1127 were not assigned by management, but grew from the bot-

tom up, coalescing a group of people who were interested in a topic. The

same was true for work with other parts of the Labs: if I was involved with

some development group, I might try to entice research colleagues to join

me, but they would be volunteers.

In any case, for a while I continued to work with Shen on combinatorial

optimization. Shen was exceptionally insightful on such problems, able to

sense a promising line of attack by playing with small examples by hand. He

had a new idea for the traveling salesman problem, a technique that greatly

improved on his previous algorithm (which was already the best known), and

I implemented it in a Fortran program. It worked well, and for many years

was the state of the art.

This kind of work was fun and rewarding, but although I could convert

ideas into working code pretty well, I wasn’t any good at the algorithmic

parts. So I gradually drifted into other areas: document preparation software,

specialized programming languages, and a bit of writing.

I did come back to work with Shen a couple of other times, including a

complex tool for optimizing the design of private networks for AT&T cus-

tomers. It was good to flip back and forth between comparatively pure com-

puter science and systems that were actually of some use to the company.
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Figure 1.9: PR photo, ∼1970 (Courtesy of Bell Labs)

The Bell Labs public relations operation was fond of Shen’s work on the

Trav eling Salesman problem and he figured in a number of advertisements.

Figure 1.8 is a blurry excerpt from one of them, with me in the corner, and

Figure 1.9, from some glossy PR magazine published by the Labs, talks

about our work on graph partitioning, perhaps after we obtained a patent for

the algorithm.

Note that, most uncharacteristically, I am wearing a tie. A few years later,

Dennis Ritchie and I wrote an article about C for another company magazine,

probably the Western Electric Engineer. Before publication, we were asked

to send pictures of ourselves to accompany the article, which we did. After a

few weeks, we were told that the pictures had been lost. No problem, we

said, we can send them again. To which the response was “This time, could

you wear ties?” We replied with a firm no, and shortly afterwards the maga-

zine was published with our original tie-less pictures, which had miracu-

lously been found.

When I started as a permanent employee, my office was on the fifth floor

of Building 2 on a corridor off Stair 9, and I stayed in it for 30 years, a fixed

point in a world of change. Over the years, my neighbors across the hall

included Ken Thompson, Dennis Ritchie, Bob Morris, Joe Ossanna, and Ger-

ard Holzmann, and eminent visitors like John Lions, Andy Tanenbaum and

David Wheeler.

For the last decade of my time at the Labs, Ken Thompson and Dennis

Ritchie’s offices were directly across the corridor from mine. Figure 1.10 is a

view of Dennis’s office, taken in October 2005 from my old office doorway.

Ken’s office was to the left.

Over the years my immediate neighbors included Bill Plauger, Lorinda

Cherry, Peter Weinberger and Al Aho. Doug McIlroy, Rob Pike and Jon
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Figure 1.10: Dennis Ritchie’s office in 2005

Bentley were just a few doors away. It’s easier to collaborate with people

who are physically close; I’ve been truly lucky in my neighbors.

1.5 137 → 127 → 1127 → 11276

Who were the players at this time, and what was the environment like? In

the early 1970s, there were just over 30 people in Computing Science

Research, with perhaps 4 to 6 working on Unix or things closely related to it.

Figure 1.11 is a montage of part of the Bell Labs internal phone book. It’s

not yellowed with age; when I arrived, the org chart part was printed on yel-

low paper, just like the yellow pages in old telephone books.

The page is from 1969. It shows the Computing Science Research Center

under Sam Morgan (Figure 1.12), who was an excellent applied mathemati-

cian and an expert in communications theory. Doug McIlroy, who played an

enormously important but not widely known role in Unix, managed a group

that included Ken Thompson and others who were involved in early Unix,

like Rudd Canaday, Bob Morris, Peter Neumann and Joe Ossanna. Elliot

Pinson’s department included Dennis Ritchie, Sandy Fraser and Steve
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Figure 1.11: Bell Labs phone book, ∼1969 (Courtesy of Gerard Holzmann)

Johnson, who were also part of Unix for many years.

Although most researchers had PhDs, no one used “Doctor”; it was first

names for everyone. One visible exception about titles was that in the phone

book of Figure 1.11, women were either Miss or Mrs, while men were free of

marital status indicators. I don’t recall exactly when this labeling stopped,

but it was certainly gone from the phone book by the early 1980s.

In the 1960s and 1970s there were few women and people of color in

technical positions at Bell Labs; most members of technical staff were white

males, and it stayed that way for a long time. In this respect, the Labs was

representative of most technical environments at this period in the history of

computing.

During the early 1970s, Bell Labs started three long-running programs

that attempted to improve the situation. The Cooperative Research Fellow-

ship Program (CRFP) began in 1972; each year, it funded four years or more

of graduate school for about 10 minority students to obtain their PhDs. The

Graduate Research Program for Women (GRPW), which started in 1974,

provided the same graduate school support for women, perhaps 15 or 20 per

year. Sev eral of them worked in Center 1127 and in my department at one
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Figure 1.12: Sam Morgan, director of 1127, ∼1981 (Courtesy of Gerard Holzmann)

time or another, and most went on to successful careers within Bell Labs, at

universities and at other companies. Each year, the Summer Research Pro-

gram (SRP), also started in 1974, provided fully funded summer internships

for roughly 60 undergraduate women and minority students, who were

hosted at Murray Hill, Holmdel and sometimes other locations, working one-

on-one with a research mentor. I was in charge of SRP for Center 1127 for

over 15 years, so I got to meet a lot of nice sharp undergrads, and mentor a

few.

These programs were effective in the long run, but the environment was

still quite homogeneous during the 1960s and 1970s, and I’m sure that I was

oblivious to some of the issues that this raised.

Bell Labs had a clear managerial hierarchy. At the top was the president,

in charge of perhaps 15 to 25 thousand people. Beneath that were areas num-

bered 10 (research), 20 (development), 50 (telephone switching), 60 (military

systems), and so on, each with a vice president. Research itself was divided

into physics (11), mathematics and communications systems (13), chemistry

(15) and the like, with an executive director for each; it also included legal

and patent groups. Mathematics Research was 131, and Computing Science

Research was “Center 137,” with half a dozen individual departments like

1371. In a major shift, all of this was renumbered a few years later, when we

became Center 127, and then during some reorganization, an extra digit was

added to the front, and we became 1127, a number that lasted until 2005,
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well after I retired in 2000.

There were relatively few lev els in the hierarchy. Researchers like me

were “member of technical staff” or MTS, and there were a couple of techni-

cal levels below that. MTS in Research normally got a private office, though

ev eryone was expected to keep the door open most of the time. There was a

supervisor level above this, though 1127 had only a few supervisors over the

years. The next level was department head, a person like Doug McIlroy who

was responsible for half a dozen to a dozen individual researchers. The level

above that was director of a center, who might have half a dozen depart-

ments, then executive director, with a handful of centers, and then vice presi-

dent, who oversaw the executive directors.

Vice presidents reported to the president. Bill Baker, an outstanding

chemist, was vice president of research from 1955 until 1973, and president

of Bell Labs until 1980. While he was vice president, it was believed that he

knew every MTS in research by name and was aware of what they were

working on. I think it might well have been true; certainly he always knew

what my colleagues and I were up to.

I was a regular MTS until 1981, when I finally succumbed to the pressure

to become a department head. Most people went into management reluc-

tantly, because although it was not the end of personal research, it did repre-

sent a slowdown, and it came with responsibilities like looking after one’s

department that could be challenging. Of course the usual arguments were

trotted out: “It’s inevitable, why not now?” Or, somewhat contradictory,

“This might be your last chance.” Or, “If not you, it will be someone else not

as good.”

For better or worse, I became head of a new department, 11276, with the

carefully meaningless name “Computing Structures Research.” The depart-

ment usually had 8 to 10 people with a daunting spectrum of interests: graph-

ics hardware, integrated circuit design tools, document preparation, operating

systems, networking, compilers, C++, wireless system design, computational

geometry, graph theory, algorithmic complexity, and lots more besides.

Understanding what each of them was working on well enough to explain it

further up the chain was always a challenge, though it was also rewarding,

and a surprising amount of what I learned then has stuck with me.

The management hierarchy was accompanied by a few perks at each

level. Some were obvious, like successively bigger offices at director and

above. I think there was also a modest salary increase for department heads

but it certainly wasn’t big enough to be memorable.

Some were more subtle: department heads and up had carpeted offices,

while ordinary folk had bare linoleum or vinyl tile. When I was promoted, I
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was giv en a glossy printed brochure listing my options for carpet color, office

furniture, and the like. I briefly tried a new desk but it was too big and

uncomfortable, so I went back to the ancient Steelcase that I had inherited in

1969. And I declined the carpet entirely, since I wasn’t enthusiastic about

distinctions of rank. Sam Morgan advised me strongly that I should take the

carpet. He said that some day I would want the authority that came from

having a carpet. I still declined, and the carpet distinction eventually went

aw ay.

The primary annual task for department heads was to assess the work of

their department members in an elaborate ritual called “merit review.” Once

a year each MTS wrote down on one side of one piece of paper a summary of

what they had done during the year; in 1127, it was known as an “I am great

report,” a term that I think originated with Sam Morgan. The department

head wrote another piece of paper that summarized and assessed the work,

including “areas for improvement,” a section that was meant to contain con-

structive criticism.

Writing the assessment and feedback was hard work, and there was a

strong tendency to leave the areas for improvement part blank, but one year

we were told that it had to be filled in; evasions like leaving it empty or say-

ing “N/A” were no longer acceptable. I came up with the phrase “Keep up

the good work,” and got away with that for a year or two before being told

that more critical comments were required, on the grounds that no one was

perfect. Fortunately I didn’t hav e to do this for a star like Ken Thompson.

What could one have said?

The department heads and the director met to come up with a consensus

evaluation for each MTS. This normally took a full-day meeting. It was fol-

lowed some weeks later by another full-day meeting that determined next

year’s salaries by allocating each MTS a share of a pot of raise money. These

two related evaluations were officially known as merit review and salary

review, but I always thought of them as “abstract merit” and “concrete merit.”

This process was repeated up the management chain, with an executive

director reviewing all the MTS results with directors, and also assessing

department heads.

Although merit review in some centers could be competitive, our reviews

were remarkably collegial. Rather than “My people are better than your peo-

ple,” the tone was more like “Don’t forget this other good work that your per-

son did.”

I may be too sanguine, but I think the whole process worked well, because

management was technically competent all the way up and everyone had

gone through the process at lower levels. The system did not seem to have
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much of a bias towards either practice or theory, at least for us in

1127—good programs and good papers were both valued. The absence of

proposals or plans for future work was a good thing. One was expected to

have roughly a year’s worth of accomplishments at the end of the year, but

any number of false starts could be ignored, and management took a long

view of people who worked on the same thing for multiple years. I think that

it also helped that in Research there were very few management levels, so

promotion wasn’t really on most people’s radar most of the time. If one

really aspired to be a manager, an org anization outside of Research would

likely be a better option.

It’s interesting to compare the Bell Labs evaluation process with how it’s

done in research universities. In the latter, hiring and especially promotion

are strongly influenced by a dozen or more letters solicited from prominent

outside researchers who are in the same specialty. This tends to encourage

deep expertise in narrow fields, since the goal of a reviewee is to master some

field so well that external reviewers can legitimately say “This person is the

best person in this sub-field at this stage of his or her career.”

By contrast, Bell Labs created a rank order for every researcher, from the

bottom up. Each department head ranked his or her people; those rankings

were merged by department heads within a center, and those in turn by the

next two lev els, so by the end everyone’s approximate position in the whole

population was determined.

A person who did great work in a narrow field might well be ranked

highly by his or her immediate management, but no one further up would

likely know of the work. Interdisciplinary work, on the other hand, stood out

at higher levels because more managers would have seen it. The broader the

collaborations, the more managers would know about it. The end result was

an organization that strongly favored collaboration and interdisciplinary

research. And because the managers who made the decisions had come up

through the same process, they were inclined in the same direction.

I was a department head for over 15 years, was probably at best an aver-

age manager, and was definitely happy to step down. Others successfully

resisted promotion for long periods; Dennis Ritchie became a department

head well after I did, and Ken Thompson never did.

Having now taught at a university for 20 years, I’m still not enthusiastic

about sitting in judgment on other people’s work. It’s necessary, howev er,

and sometimes one has to make decisions that do affect people’s liv es, like

firing someone (which I fortunately never had to do) or failing a student in a

course (not common but not unheard of either). One of the good things about

the Bell Labs process was that it was based on the shared judgment of other



CHAPTER 1: BELL LABS 25

people who understood the work. As Doug McIlroy said, “Collegiality was

the genius of the system. Nobody’s advancement depended on the relation-

ship with just one boss.” The process at the Labs wasn’t perfect, but it was

pretty good and I’ve certainly heard and read about performance review pro-

cesses that are far worse.





Chapter 2

Proto-Unix (1969)

“At some point I realized that I was three weeks from an operating sys-

tem.”

Ken Thompson, Vintage Computer Festival East, May 4, 2019

The Unix operating system was born in 1969, but it didn’t spring into

existence out of nothing. It came out of the experiences of several people at

Bell Labs who had worked on other operating systems and languages. This

chapter tells that story.

2.1 A bit of technical background

This section is a short primer on the basic technical material that forms

the central topics of the book: computers, hardware, software, operating sys-

tems, programming, and programming languages. If you’re already familiar

with these ideas, skip ahead; if not, I hope this will bring you up to speed

enough that you can appreciate what it’s all about. If you want more detailed

explanations aimed at non-technical readers, you might like my Understand-

ing the Digital World, though I am not unbiased.

A computer is fundamentally not much more than a calculator like the

ones that used to be separate gadgets but are now just applications on a

phone. Computers can do arithmetic computations exceedingly fast, how-

ev er, billions per second today, though it was significantly less than millions

per second in the 1970s.

A typical computer of the 1960s and 1970s had a repertoire of a few

dozen kinds of instructions that it could perform: arithmetic (add, subtract,

multiply, divide), read information from primary memory, store information



28 CHAPTER 2: PROTO-UNIX

into primary memory, and communicate with devices like disks and anything

else that might be connected. Plus one other crucial thing: the repertoire

includes instructions that decide which instructions to perform next—thus

what the computer will do next—based on the results of previous computa-

tions, that is, what it has already done. In that way, a computer controls its

own destiny.

Instructions and data are stored in the same primary memory, which is

usually called RAM, for “random access memory.” If you load a different set

of instructions into the RAM, the computer does a different job when it

executes them. That’s what’s happening when you click on an icon for a pro-

gram like Word or the Chrome browser—it tells the operating system to load

the instructions for that program into memory and start to run it.

Programming is the process of creating the sequences of operations that

perform some desired task, using some programming language. It’s possible

to create the necessary instructions directly, but this is a difficult chore with

many clerical details, even for tiny programs, so most of the advances in pro-

gramming have inv olved creating programming languages that are closer to

the way that humans might express a computation. Programs called compil-

ers (which of course have to be written themselves) translate from higher-

level languages (closer to human language) ultimately to the individual

instructions of a specific kind of computer.

Finally, an operating system is just a big and complicated program built

from the same instructions as ordinary programs like Word or a browser. Its

task is to control all the other programs that are trying to run, and to manage

interactions with the rest of the computer.

This is pretty abstract, so here’s a small concrete example of what pro-

gramming is. Suppose we want to compute the area of a rectangle from its

length and width. We might say in English “the area is the product of the

length and width.” Writing it on the board in school, a teacher could say that

area is computed with this formula:

area = length × width

In a higher-level programming language, we would write

area = length * width

which would be the exact form in most of the popular languages of today. A

compiler translates that into a still readable but machine-specific sequence of

machine instructions for a computer. That sequence might look like this for a

simple hypothetical computer:
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load length

multiply width

store area

Finally a program called an assembler converts that sequence of more or less

readable instructions into a sequence of machine instructions that can be

loaded into the primary memory of a computer; when those instructions are

executed, they will compute the area from the given length and width. Of

course this glosses over any number of details—how do we specify compil-

ing and loading, how do the length and width get into the computer, how is

the area printed, and so on—but it’s the essence of the story.

If you prefer to see a working example, here is a complete program in the

C programming language that reads a length and width, and prints an area:

void main() {

float length, width, area;

scanf("%f %f", &length, &width);

area = length * width;

printf("area = %f\n", area);

}

This program can be compiled and executed on any computer.

Everyone is familiar at least with the names of modern operating systems

like Windows and macOS; cell phones run operating systems like Android

and iOS.

An operating system is a program that controls a computer, sharing the

resources among programs that are running. It manages the primary mem-

ory, allocating it to running programs as they need it. On a desktop or laptop

the operating system lets you run a browser, a word processor, a music

player, and perhaps our little area-computation program, all at the same time,

switching its attention to each as necessary.

It also controls the display, giving each program screen visibility when

requested, and it manages storage devices like disks, so that when you save

your Word document, it is preserved so that you can recover it and resume

work later on.

The operating system also coordinates communication with networks like

the Internet, so your browser can help you search, check in with friends,

shop, and share cat videos, all simultaneously.

It’s not so obvious to non-programmers, but an operating system also has

to protect programs from other programs in case they hav e errors, and it has

to protect itself from errant or malicious programs and users.

Something similar is going on with the operating systems on phones.

Underneath, there’s a lot of action to maintain communications via a mobile
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network or Wi-Fi. Phone apps are exactly the same idea as programs like

Word, though often different in detail, and they are written in the same pro-

gramming languages.

Operating systems today are big and complicated programs. Life was

simpler in the 1960s but relative to the time, they were still big and compli-

cated. Typically a computer manufacturer like IBM or DEC (Digital Equip-

ment Corporation) would provide one or more operating systems for its vari-

ous kinds of hardware. There was no commonality at all between hardware

from different manufacturers and sometimes not even between hardware

offerings from the same manufacturer, and thus there was also no commonal-

ity among operating systems.

To further complicate matters, operating systems were written in assem-

bly language, a human-readable representation of machine instructions, but

very detailed and specific to the instruction repertoire of a particular kind of

hardware. Each kind of computer had its own assembly language, so the

operating systems were big and complicated assembly language programs,

each written in the specific language of its own hardware.

This lack of commonality among systems and the use of incompatible

low-level languages greatly hindered progress because it required multiple

versions of programs: a program written for one operating system had to be

in effect rewritten from scratch to move to a different operating system or

architecture. As we shall see, Unix provided an operating system that was

the same across all kinds of hardware, and eventually it was itself written in a

high-level language, not assembly language, so it could be moved from one

kind of computer to another with comparatively little effort.

2.2 CTSS and Multics

The most innovative operating system of the time was CTSS, the Compat-

ible Time-Sharing System, which was created at MIT in 1964. Most operat-

ing systems in that era were “batch processing.” Programmers put their pro-

grams on punch cards (this was a long time ago!), handed them to an opera-

tor, and then waited for the results to be returned, hours or even days later.

Punch cards were made of stiff high-quality paper and could store up to

80 characters, typically a single line of a program, so the 6-line C program

above would require 6 cards, and if a change was necessary, the card(s)

would have to be replaced. Figure 2.1 shows a standard 80-column card.

By contrast, CTSS programmers used typewriter-like devices (“terminals”

like the Model 33 Teletypes in Figure 3.1 in the next chapter) that were con-

nected directly or by phone lines to a single big computer, an IBM 7094 with
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Figure 2.1: Punch card, 7-3/8 by 3-1/4 in [187.325 mm by 82.55 mm]

twice the usual 32K words of memory. The operating system divided its

attention among the users who were logged in, switching rapidly from one

active user to the next, giving each user the illusion that they had the whole

computer at their disposal. This was called “time-sharing,” and (speaking

from personal experience) it was indescribably more pleasant and productive

than batch processing. Most of the time, it really did feel like there were no

other users.

CTSS was such a productive programming environment that researchers

at MIT decided to create an even better version, one that could serve as an

“information utility” to provide computing services to a large and dispersed

user population. In 1965, they beg an to design a system called “Multics,” the

Multiplexed Information and Computing Service.

Multics was going to be a big job, since it involved ambitious new soft-

ware, and new hardware with more capabilities than the IBM 7094, so MIT

enlisted two other organizations to help. General Electric, which at the time

made computers, was to design and build a new computer with new hardware

features to better support time-sharing and multiple users. Bell Labs, which

had a great deal of experience from creating its own systems since the early

1950s, was to collaborate on the operating system.

Multics was intrinsically a challenging prospect, and it soon ran into prob-

lems. In retrospect, it was partly a victim of the second system effect: after a

success (like CTSS), it’s tempting to try to create a new system that fixes all

the remaining problems with the original while adding everybody’s favorite

new features too. The result is often a system that’s too complicated, a con-

sequence of taking on too many different things at the same time, and that
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was the case with Multics. The phrase “over-engineered” appears in several

descriptions, and Sam Morgan described it as “an attempt to climb too many

trees at once.” Furthermore, one does not need to be much of a student of

organizations to anticipate that there might also be problems with a project

involving two very different companies and a university, in three locations

spread across the country.

Half a dozen or more Bell Labs researchers worked on Multics from 1966

through 1969, including Doug McIlroy, Dennis Ritchie, Ken Thompson, and

Peter Neumann, who had taken over Vic Vyssotsky’s role when Vic moved to

another Bell Labs location. Doug was deeply involved with PL/I, the pro-

gramming language that was to be used for writing Multics software. Dennis

had worked on Multics documentation while a student at Harvard and

worked on the device input and output subsystem at the Labs. Ken focused

on the input/output subsystem, experience that proved valuable when he

began work on Unix, though in a 2019 interview, he described his Multics

work as being “a notch in a big wheel and it was producing something that I

didn’t want to use myself.”

From the Bell Labs perspective, by 1968 it was clear that although Mul-

tics was a good computing environment for the handful of people that it sup-

ported, it was not going to achieve its goal of being an information utility that

would provide computing services for the Labs at any reasonable cost; it was

just too expensive. Accordingly Bell Labs dropped out of the project in April

1969, leaving MIT and GE to soldier on.

Multics was eventually completed, or at least declared a success. It was

supported and used until 2000, though not widely. Multics was the source of

many really good ideas, but its most lasting contribution was entirely unan-

ticipated: its influence on a tiny operating system called Unix that was cre-

ated in part as a reaction to the complexity of Multics.

2.3 The origin of Unix

When Bell Labs pulled out of Multics, the people who had been working

on it had to find something else to do. Ken Thompson (Figure 2.2) still

wanted to work on operating systems, but upper management at the Labs had

been burned by the Multics experience and had no interest in buying hard-

ware for another operating system project. So Ken and others spent time

exploring ideas and doing paper designs for various operating system compo-

nents, though with no concrete implementations.

Around this time, Ken found a little-used DEC PDP-7, a computer whose

main purpose was as an input device for creating electronic circuit designs.
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Figure 2.2: Ken Thompson, ∼1981 (Courtesy of Gerard Holzmann)

The PDP-7 was first shipped in 1964 and computers were evolving quickly,

so by 1969 it was dated. The machine itself wasn’t very powerful, with only

8K 18-bit words of memory (16K bytes), but it had a nice graphics display,

so Ken wrote a version of a space-travel game to run on it. A player could

wander through the solar system and land on different planets. It was mildly

addictive and I spent hours playing with it.

The PDP-7 had another interesting peripheral, a very tall disk drive with a

single vertical platter. Credible folklore held that it was potentially danger-

ous to stand in front of it in case something broke. The disk was too fast for

the computer. This presented an interesting problem, and Ken wrote a disk

scheduling algorithm that would try to maximize throughput on any disk, but

particularly this one.

Now the question was how to test the algorithm. That required loading

the disk with data, and Ken decided that he needed a program to put data on

it in quantity.

“At some point I realized that I was three weeks from an operating sys-

tem.” He needed to write three programs, one per week: an editor, so he

could create code; an assembler, to turn the code into machine language that

could run on the PDP-7; and a “kernel overlay—call it an operating system.”

Right at that time, Ken’s wife went on a three-week vacation to take their

one-year-old son to visit Ken’s parents in California, and Ken had three

weeks to work undisturbed. As he said during a 2019 interview, “One week,
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one week, one week, and we had Unix.” By any measure, this is real soft-

ware productivity.

A couple of years after Ken and I had both retired from Bell Labs, I asked

him about the story that he had written the first version of Unix in three

weeks. Here, verbatim, is his email response, which is completely consistent

with the much more recent interview:

Date: Thu, 9 Jan 2003 13:51:56 -0800

unix was a file system implementation to test thruput and

the like. once implemented, it was hard to get data to it

to load it up. i could put read/write calls in loops, but

anything more sophisticated was near impossible. that was

the state when bonnie went to visit my parents in san diego.

i decided that it was close to a time sharing system, just

lacking an exec call, a shell, an editor, and an assembler.

(no compilers) the exec call was trivial and the other 3

were done in 1-week each - exactly bonnie’s stay.

the machine was 8k x 18 bits. 4k was kernel and 4k was

swapped user.

ken

This first version of a recognizable Unix system was running in mid to

late 1969, so it seems reasonable to say that’s when Unix was born.

The early system had a small group of users: Ken and Dennis, of course,

plus Doug McIlroy, Bob Morris, Joe Ossanna, and through a bit of blind

luck, me. Each user had a numeric user id. Some of these ids corresponded

to system functions, not to human users—the root or super-user was id 0, and

there were a couple of other special cases. Ids for real users started around 4.

I think that Dennis was 5, Ken was 6, and mine was 9. There must be some

cachet in having a single-digit user id on the original Unix system.

2.4 What’s in a name?

Sometime during these early days the new PDP-7 operating system

acquired a name, though the details are murky.

I hav e a memory of standing in my office doorway, talking with a group

that probably included at least Ken, Dennis and Peter Neumann. The system

had no name at that point, and (if memory serves) I suggested, based on

Latin roots, that since Multics provided “many of everything” and the new

system had at most one of anything, it should be called “UNICS,” a play on

“uni” in place of “multi.”
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An alternative memory is that Peter Neumann came up with the name

UNICS, for “UNiplexed Information and Computing Service.” As Peter

recalls,

“I remember vividly that Ken came in one morning for lunch and said

that overnight he had written a thousand-line one-user OS kernel for

the PDP-7 that Max Matthews had lent him. I suggested that he

should make it a  multi-user system, and sure enough the next day he

came in for lunch having written another thousand lines with a multi-

user kernel. It was the one-user kernel that prompted the ‘castrated

Multics’ concept of UNICS.”

Peter has graciously said that he doesn’t recall further specifics, and so,

deservedly or not, I have gotten credit for coining the name.

Either way, UNICS somehow mutated into Unix, which was clearly a

much better idea. (It was rumored that AT&T lawyers did not like “Unics”

because of its similarity to “eunuchs.”) Dennis Ritchie subsequently charac-

terized the name as “a somewhat treacherous pun on Multics,” which indeed

it is.

2.5 Biography: Ken Thompson

In May 2019, Ken and I had an informal “fireside chat” at the Vintage

Computer Festival East in Wall, New Jersey. My role was to ask a few lead-

ing questions, then sit back and listen. Some of the material here is para-

phrased from that event, which can be found on YouTube.

Ken was born in 1943. His father was in the US Navy, so Ken spent sig-

nificant parts of his childhood living in different parts of the world, including

California, Louisiana, and a few years in Naples.

He grew up interested in electronics, and went to the University of Cali-

fornia at Berkeley to study electrical engineering. He said that he found the

electronics part really easy because it had been his hobby for 10 years before

college. At Berkeley, he discovered the field of computing.

“I consumed computers, I loved them. At that time, there was no com-

puter science curriculum at Berkeley; it was being invented.

I was drifting along the summer after I graduated. [Graduation] was a

surprise because I didn’t know that I had gotten all the requirements.

I was just going to stay in the university because ... I owned it. My fin-

gers were in absolutely everything. The main monster computer at the



36 CHAPTER 2: PROTO-UNIX

university shut down at midnight and I’d come in with my key and I’d

open it up and it would be my personal computer until 8 AM.

I was happy. No ambition. I was a workaholic, but for no goal.”

In his final year, Ken audited a course taught by Elwyn Berlekamp, a

Berkeley professor who soon afterwards went to Bell Labs. In the summer

after graduating, Ken didn’t apply for grad school because he didn’t think he

was good enough.

“Tow ards the end of the summer, [Berlekamp] said ‘Here’s your

classes for grad school.’ He had applied for me and I got accepted!”

When Ken finished his MS at Berkeley in 1966, Bell Labs was among

several companies that tried to recruit him, but he explicitly said that he

didn’t want to work for a company.

The recruiter kept trying. As Ken says, “I skipped maybe 6 or 8 recruit-

ing attempts by Bell Labs—again, no ambition. The Bell Labs recruiter

came and knocked on my door at home. I invited him in; his story is that I

offered him ginger snaps and beer.” (This must be part of some odd Califor-

nia diet.)

Finally, Ken agreed to come to New Jersey at Bell Labs’ expense, but

only for a day, and primarily to visit friends from high school days. But

when he arrived at Bell Labs, he was impressed by the names he saw:

“The very first thing I did was walk down the corridor of computer sci-

ence research and every name on the doors on the way down, I knew.

It was just shocking. I was interviewed by two amazing people ... one

was Shen Lin.

I got in my rent-a-car after the day. Somehow they tracked me, and

there was an offer waiting at like the third stop down the east coast. I

picked up the offer and drove it from one stop to another, which was

maybe two hours, thinking about it, and when I got to the next friend’s

house, I called them and said OK.”

Ken arrived at Bell Labs in 1966 and started work on Multics, then on

Unix as described earlier, so I won’t repeat that here.

Ken had a long-standing interest in games, and was a chess enthusiast as a

kid. He didn’t like to lose but at the same time, when he won he felt bad for

his opponent, so eventually he became a spectator only. In 1971, he wrote a

chess playing program for the PDP-11. This was promising enough that he

began to build special-purpose hardware to speed up computation, for
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example to generate legal moves from a given position. Eventually this cul-

minated in Belle (Figure 2.3), the chess-playing computer that he and Joe

Condon evolved from 1976 through 1980.

Figure 2.3: Ken Thompson and Joe Condon (Computer History Museum)

Belle (Figure 2.4) had a successful career. It was the first computer to

become a chess master, a rating of 2200 in regular tournament play against

human opponents, and it won the 1980 World Computer Chess championship

and several ACM computer chess tournaments before retiring to the Smithso-

nian Institution.

Dennis Ritchie wrote a short article for the International Computer Chess

Association on Ken Thompson’s activities with various games: www.bell-

labs.com/usr/dmr/www/ken-games.html. It shows Ken’s breadth of game

interests, well beyond just chess. There is also a description of Belle’s win

over Blitz 6.5 at the ACM computer chess championship on December 5,

1978, with comments from Monty Newborn, a computer chess pioneer, and

International Master David Levy:

1. e4 e5 2. Nf3 Nc6 3. Nc3 Nf6 4. Bb5 Nd4 5. Bc4 Bc5 6. Nxe5 Qe7
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Figure 2.4: Belle chess computer (Courtesy of Computer History Museum)

7. Bxf7+ Kf8 8. Ng6+ hxg6 9. Bc4 Nxe4 10. O-O Rxh2!! 11. Kxh2

{hastening the loss} Qh4+ 12. Kg1 Ng3 13. Qh5 {ineffectual delay}

gxh5 14. fxg3+ Nf3# {perhaps uniquely blocking a check, giving a

double check and mating simultaneously; “the most beautiful combi-

nation created by a computer program to date... computer chess wit-

nessed the start of a new era.”}

Chess games end with a win, loss or draw. The 50-move rule says that a

player can claim a draw if there have been 50 moves without a capture or a

pawn move; this prevents one player from just playing on when there is no

way to force a win.

Ken decided explore the question of whether 50 moves is the right num-

ber. He used Belle and some sophisticated database organization to evaluate

all four- and five-piece endgames and discovered that some were winnable in

more than 50 moves, given optimal play. By this time, Ken was well known

in the chess world, and sometimes grandmasters would show up at the Labs

to try their hand against Belle, particularly for endgames. I met world cham-

pions Anatoly Karpov and Vishy Anand just by being around on the right

weekends.

Ken was also an avid pilot, and regularly flew himself and guests around

New Jersey, starting from the airport in Morristown. He got other members
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of 1127 interested in flying as well, and at peak there were half a dozen pri-

vate pilots in the “1127 air force.” This group used to set off to view fall

foliage or fly to some interesting place for lunch. Doug McIlroy recalls:

“Besides fall foliage in New England, the air force attended an eclipse

in the Adirondacks, thanks to Ken’s piloting and Rob Pike’s tele-

scopes. There was also a flight to observe a transit of Mercury. The

astronomical theme in the Unix crew beg an with Joe Ossanna’s azel,

which had controlled the Telstar ground station, and we used to tell us

where to find artificial satellites. Next came Bob Morris’s sky pro-

gram, then Ken’s celestial event predictor, Lee McMahon’s star maps

made with my map program, and finally Rob’s scat star catalog.”

In December 1992, Ken and Fred Grampp went to Moscow to fly a

MiG-29, a step up from their normal Cessnas. Figures 2.5 and 2.6 show Ken

ready to go and taxiing back after a flight.

Figure 2.5: Ken Thompson preparing to take off (Courtesy of cat-v.org)

Ken and I retired from Bell Labs at the end of 2000. I went to Princeton,

and he joined Entrisphere, a startup founded by Bell Labs colleagues. In

2006, he moved to Google, where with Rob Pike and Robert Griesemer, he

created the Go programming language. I heard about his move from
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Figure 2.6: Ken taxiing after a flight (Courtesy of cat-v.org)

Entrisphere to Google from someone else, so I asked for confirmation. His

reply:

Date: Wed, 1 Nov 2006 16:08:31 -0800

Subject: Re: voices from the past

its true. i didnt change the median age of google much,

but i think i really shot the average.

ken



Chapter 3

First Edition (1971)

“This manual gives complete descriptions of all the publicly available fea-

tures of Unix. It provides neither a general overview (see “The Unix

Time-sharing System” for that) nor details of the implementation of the

system (which remain to be disclosed).”

First Edition Unix Programmer’s Manual, November 3, 1971

“BUGS: rm probably should ask whether a read-only file is really to be

removed.”

Section of manual page for rm command, November 3, 1971

The PDP-7 Unix system was interesting enough that people were starting

to use it, even though it ran on a tiny computer and didn’t hav e a lot of soft-

ware. Still, it was clearly useful and had become the preferred computing

environment for a small group who found it more fun and productive than the

big central computer. Thus Ken Thompson, Dennis Ritchie and others began

to lobby for a larger computer that would support more users and enable

more interesting research.

One of the early proposals was for the purchase of a DEC PDP-10, which

was popular at universities and other research labs. The PDP-10 was loosely

similar to the IBM 7090, with 36-bit words like the 7090 and the GE 635 and

645, and it had a great deal more horsepower than the wimpy little PDP-7.

But it would also cost much more; the proposal was for half a million dollars.

The Multics experience was an all-too-recent bad memory, so the PDP-10

proposal never got off the ground. As Ken said, the management position

was “We don’t do operating systems,” though perhaps it was more like

“We’re not going to give you a lot of money for a big machine.”
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I suppose that it could be argued that one positive role of management is

to be cautious most of the time, so that people who want resources are forced

to hone their proposals and focus their pitches. If resources are tight, that’s

more likely to lead to good, well-thought-out work than if there are no con-

straints.

In any case, the Unix group came up with another idea, to acquire a new

minicomputer that DEC had just announced, the PDP-11, which would cost

more like $65,000 than $500,000 in 1971 dollars.

This was rejected too. A remark from Sam Morgan in Mike Mahoney’s

1989 oral history interview explains some of the reasoning:

“The management principles here are that you hire bright people and

you introduce them to the environment, and you give them general

directions as to what sort of thing is wanted, and you give them lots of

freedom. Doesn’t mean that you always necessarily give them all the

money that they want. And then you exercise selective enthusiasm

over what they do. And if you mistakenly discourage or fail to

respond to something that later on turns out to be good, if it is really a

strong idea, it will come back.”

In hindsight, being forced to work within constraints was a good thing.

As Ken himself said in his 1983 Turing Award lecture,

“Unix swept into popularity with an industry-wide change from central

mainframes to autonomous minis. I suspect that Daniel Bobrow

would be here instead of me if he could not afford a PDP-10 and had

had to ‘settle’ for a PDP-11.”

(Daniel Bobrow was the primary author of the Tenex operating system,

which was written for the PDP-10 in 1969.)

3.1 Unix for patent applications

Direct appeals for a machine failed, but there was an alternative. Bell

Labs, as a large and productive scientific research operation, generated a lot

of patent applications. At that time, it was being granted an average of

almost one patent per day. Patent applications were text documents but with

some rigid format requirements, like line-numbered pages. No existing com-

puter system could handle these oddities, so the Patent department was plan-

ning to buy hardware from a company which promised software that would

ev entually produce applications in the proper format, though it could not do

numbered lines at the time.
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Joe Ossanna came up with another plan. The Patent department would

use a PDP-11 for preparing patent applications; the Unix group would write

the necessary software for them, complete with a formatting program that

would print applications in the proper format; and no, no one would be work-

ing on operating systems.

This combination of ideas slalomed around any residual management

objections. Money for a PDP-11 came from Max Matthews, the director of

the Speech and Acoustics Research Center. Max was supportive because one

of his departments heads, Lee McMahon, was very interested in text process-

ing and along with Ossanna was a promoter of the plan.

The deal was approved, a PDP-11 was purchased, and Ken and Dennis

quickly converted the PDP-7 version of Unix to run on it. The PDP-11 was a

limited machine, with only 24K bytes of primary memory and a half-

megabyte disk. The implementation used 16K bytes for the operating system

and the remaining 8K for user programs.

Joe Ossanna wrote a program called Nroff (“new roff”), analogous to the

existing Roff text formatter, that was able to print patent applications in the

required format. By the last half of 1971 typists were cranking out patent

applications on Unix full time. Chapter 5 has much more to say about text

formatting, since it was a major part of the Unix story in the 1970s.

That was during the day. At night, Ken, Dennis, and others were develop-

ing software on the same PDP-11. Development had to be done at night so

as not to interfere with the typists, and it had to be careful. The PDP-11 had

no hardware protection mechanisms to keep programs from interfering with

each other or with the operating system, so a careless mistake could easily

crash the system, and an error in the file system could lose everyone’s work.

But the experience was so successful that the patent department bought

another PDP-11 for the Unix group, and that made it possible to do develop-

ment full time. This version became the first edition of Unix.

Figure 3.1 is a 1972 public-relations picture of Ken Thompson and Den-

nis Ritchie using a PDP-11 running an early version of Unix. The computer

itself is apparently a specific model called a PDP-11/20. The smallish round

objects at about head level are DECtapes, which were magnetic tape devices

that held 144K 18-bit words. Individual blocks could be read and written, so

they could serve as temporary slow but reliable disks; the tapes themselves

were removable, so they were used for backup as well.

Ken is typing at a Model 33 Teletype, a sturdy but slow and noisy device,

basically a computer-controlled electro-mechanical typewriter that could only

print in upper case, at 10 characters per second. The Model 33 dates from

1963 but earlier versions had been in widespread use since the early 1930s.
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Teletype Corporation was a part of AT&T, and Teletypes were widely used

throughout the Bell System and elsewhere for sending messages, and later for

connecting to computers. Whatever was typed on the Teletype keyboard was

sent to the computer, and responses were printed (in upper case) on a long

roll of paper; the tops of the paper rolls are just visible in the picture.

Arguably, one reason why many command names on Unix are short is that it

took considerable physical force to type on a Model 33, and printing was

slow.

Figure 3.1: Ken (seated) and Dennis at the PDP-11, ∼1972 (Wikipedia)

Someone even built an experimental “portable” Model 33. The keyboard

and printer were shoehorned into a suitcase-like container that in theory

could be carried around, though at 55 pounds (25 kg) you wouldn’t carry it

far. (It had no wheels either.) It was connected to a remote computer

through a dial-up phone connection and a built-in acoustic coupler: plug a

telephone handset into a couple of rubber sockets and the coupler converted

data into sound and back again, rather like a fax machine. I managed to haul

one of these terminals home a couple of times, but calling it portable was too
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charitable.

Things improved markedly when the Model 37 Teletype came along. It

had lower case letters as well as upper case, and was somewhat faster (15

characters per second rather than 10), though it was still strenuous to type on

it. It had an extended typebox so it could print mathematical symbols, which

was useful for the patent applications as well as our own technical papers,

and it could roll the paper back and forth in half-line steps, which made

mathematical subscripts and superscripts possible.

Feeding paper into it was also a challenge; it took real contortions to load

a new box of fan-fold paper. Bob Morris once sent Joe Ossanna a mail mes-

sage that consisted of 100 reverse line-feeds; when Joe tried to read the mes-

sage, the Model 37 sucked the paper back out and deposited it on the floor.

Bob occupied the office across from me for a number of the early years.

“Robert Morris” was a common name at Bell Labs; indeed, there was a visi-

tor named Robert Morris in the same office a few years later. So Bob fre-

quently got misdirected mail, which he would dutifully send back, explaining

that he was the wrong Morris. One piece of mail kept on coming, an elabo-

rate blueprint from some other part of the company that said “Please initial

and return.” All attempts to head it off failed, so finally one day Bob did ini-

tial it and sent it back. It never appeared again.

3.2 The Unix room

Although each Research MTS had a private office, much Unix develop-

ment went on in a shared space called “the Unix room.” Its actual location

changed a couple of times over the years, but it was always a place to hang

out, learn what was going on, contribute ideas, or just socialize.

The original Unix room was briefly on the fourth floor of Building 2

where the PDP-7 lived, but the main location for many years was on the sixth

floor of Building 2 in room 2C-644. Building 2 only had five office floors.

The sixth floor was basically a service corridor: dingy, dimly lit and lined

with storage areas holding dusty abandoned equipment in locked wire cages.

At one end there was an open area with vending machines that offered

appalling coffee and almost inedible pastries that fueled late-night program-

ming, and there were a handful of enclosed spaces, one of which was the

Unix room for at least a decade. It held the PDP-11; the picture of Ken and

Dennis in Figure 3.1 was taken there. A few tables and chairs and some

other terminals made it a good shared working area.

One of the early non-1127 Unix enthusiasts was a very distinguished the-

oretical physicist, now deceased, who I will call “M— L—.” M— L— was
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eager to use Unix, he was forward-thinking in his use of computers in

physics, and he was a kind and generous person. But he would talk your ear

off. Once he got started, there was no way to stop him, and you were in for

an hour of one-way conversation. So someone scratched a small hole in the

frosting of the door to the Unix room so we could peer in before entering, to

see if he was there. It was called the “L— hole.”

Figure 3.2: Unix room espresso machine and coffee grinders

At some point the Unix room migrated to room 2C-501, on the fifth floor

at Stair 9, just around the corner from my office. It also acquired a variety of

coffee machines, originally the usual carafes with a heater that kept the cof-

fee warm until it burned (or the carafe did, something that happened regu-

larly), and then a sequence of ever more expensive coffee grinders and

espresso machines (Figure 3.2), the last of which cost something like $3,000.

If my sources are right, Unix room denizens paid for the machine by passing

the hat and management paid for the coffee.

The Unix room was just plain fun; there was always something going on.

Some people worked there almost exclusively and rarely used their offices.

Others would drop in multiple times a day for coffee and conversation. It’s
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hard to overstate how important the Unix room was for keeping up with what

colleagues were doing, and for creating and maintaining a sense of commu-

nity.

In retrospect, I think that Bell Labs did a good job with space. Private

offices, though they cost more than open areas, give people peace and quiet, a

place to focus without constant noise in the background, storage for books

and papers, and a door to close for intense thought or private conversations.

By now, I’v e spent enough time in open-plan work areas to know that, for me

at least, they are utterly destructive of concentration. The Bell Labs mixture

of one’s own private office and a shared space for the community worked

very well.

The Labs also made it easy for people to keep on working at home in the

ev ening. For many years, I had a dedicated phone line (after all, AT&T was

the phone company) in my home that let me connect to the Unix systems at

Murray Hill so I could work evenings and weekends. As an unexpected

fringe benefit, there was a special access code that allowed us to make unlim-

ited and unbilled long distance telephone calls to anywhere in the USA,

which was rather a nice perk at a time when long distance calls cost actual

money. Ken Thompson told me more on how this came to be:

“Joe Ossanna decided that we deserved home phone lines and tele-

types. He invented a form to order them and made copies that he put

in the stationery store room. He put himself down as the approver and

then submitted several for the core Unix crowd. After several ques-

tioning telephone calls, Joe started getting the forms all filled out,

which he approved. It was that simple, he just invented the form and it

happened.”

In 1985, Peter Weinberger was promoted to department head in 1127, and

a professional photograph was taken for the company newspaper, the Bell

Labs News (familiarly known as the Bell Labs Good News since it only

printed positive stories). In a serious tactical error, Peter left the original

print of his headshot (Figure 3.3) in the Unix room.

Soon his image was all over the place, sometimes filtered through the

AT&T logo (Figure 3.4), which had recently been introduced. As Gerard

Holzmann says,

“Within a few weeks after AT&T had revealed the new corporate logo,

Tom Duff had made a Peter logo (Figure 3.5) that has since become a

symbol for our center. Rob Pike had T-shirts made. Ken Thompson

ordered coffee mugs with the Peter logo.
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Figure 3.3: Original Peter face (Courtesy of Gerard Holzmann)

Figure 3.4: AT&T “death-star” logo

Over the years, Peter’s visage showed up in dozens of places—an organi-

zation chart with Peter faces all the way to the top, a large array of circular

magnets on stairway walls, impressed in newly laid concrete floors, on

microprocessor chips, and, most prominently, in the night of September 16,

1985, on one of the Bell Labs water towers (Figure 3.6).

Rumors have circulated about who the painters were, but lips are still

sealed more than three decades later. A reimbursement request for the paint

was submitted, but it was rejected. In any case, within a couple of days the

water tower image was painted over by an officialdom that apparently did not

share our sense of humor.

The full story of Peter’s many faces can be found at spinroot.com/pjw, a

web site maintained by Gerard, who with Rob Pike did many of the original

enhancements of Peter’s picture.
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Figure 3.5: Peter filtered through AT&T logo (Courtesy of Gerard Holzmann)

Bell Labs was an informal place, but sometime in the early to mid 1980s,

a new policy was instituted: employees had to wear their badges at all times.

This was undoubtedly a sensible precaution to discourage interlopers, but it

wasn’t popular. As a protest, one colleague, who will remain nameless here,

stuck his badge to his forehead with super-glue; another took to wearing it

clipped to the hair on his chest, revealing it only upon demand.

The badges had no security features; they consisted only of a picture in a

template. Accordingly, we undertook a campaign to create a fake person,

Grace R Emlin, who had her own login, gre, her own badge (Figure 3.7),

and from time to time an appearance on official lists and publications.

I made my own badge with a Mickey Mouse image (Figure 3.8). I wore it

regularly, including one day at Bell Labs in Holmdel, New Jersey, for a meet-

ing with Bill Gates, who was there for some marketing of Windows 3.0. No

one noticed.

Figures 3.9 and 3.10 show random parts of the Unix room in 2005.

3.3 The Unix Programmer’s Manual

One of the early contributions of Unix was its online manual, in a now-

familiar format and concise style. Every command, library function, file for-

mat, and so on had a page in the manual that described briefly what it was

and how to use it. For example, Figure 3.11 shows the 1st Edition manual

page for the cat command, which concatenates zero or more files onto the

standard output stream, by default the user’s terminal.

Early man pages tended to be literally only a single page, a slimness that

is uncommon today. Besides brevity, a  couple of features of man pages were

novel at the time, like the BUGS section, which acknowledged that programs
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Figure 3.6: Peter on the water tower, 1985 (Courtesy of Gerard Holzmann)
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Figure 3.7: Grace Emlin, MTS

do have bugs, or perhaps “features,” imperfections that should at least be

recorded even if not fixed right away.

The cat command hasn’t changed in 50 years, aside from acquiring a

few optional and probably unnecessary arguments that somewhat modify its

behavior; it’s still part of the core set of Unix commands. You can see its

current status by typing the command

$ man cat

in a terminal window in Linux, macOS or Windows Subsystem for Linux

(WSL). And of course you can view the manual page for the man command

itself with

$ man man
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Figure 3.8: My high-security Bell Labs badge

3.4 A few words about memory

Younger readers might wonder about the accuracy of some of the memory

sizes that I have been quoting along the way. For instance, an IBM 7090 or

7094 had 32K (32,768) 36-bit words; the original PDP-7 that Ken used had

8K (8,192) 18-bit words, that is, around one eighth of the 7090 memory; and

the first PDP-11 had 24K bytes of primary memory and a half-megabyte

disk. For comparison, my 2015 Macbook Air has 8 GB of memory (over

330,000 times as much), a 500 GB disk (half a million times as much), and

cost barely a thousand dollars.

In short, memories were tiny by today’s standards, where gigabytes of pri-

mary memory and terabytes of disk storage are cheap, compact and therefore

common. But memory technology in the 1960s and early 1970s was differ-

ent. The primary memory of a computer was built from arrays of tiny donut-

shaped ferrite cores, connected with an intricate though orderly set of wires

that were threaded by hand through the cores. Each core could be magne-

tized one way or the other (think clockwise or counterclockwise) and thus

was capable of representing one bit of information; eight cores would be a

byte.

Core memory was very expensive, since manufacturing it took highly

skilled manual labor, it was bulky, and it weighed a lot. Figure 3.12 shows a
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Figure 3.9: Unix room, October 2005

core memory with 16K bits (2K bytes), which in 1971 would have cost about

$16,000, or close to a dollar a bit.

Memory was often the most costly component of a computer. When

ev ery byte was precious, that scarcity imposed a certain discipline on pro-

grammers, who always had to be conscious of how much memory they were

using, and sometimes had to resort to trickery and risky programming tech-

niques to fit their programs into the available memory.

One thing that Unix did well was to make effective use of the limited

memory of the computers that it ran on. Some of this was due to exception-

ally talented programmers like Ken and Dennis, who knew how to sav e mem-

ory.

Some was due to their genius in finding ways to achieve generality and

uniformity that made it possible to accomplish more with less code. Some-

times this was achieved by clever programming, while in other cases it was a

result of finding better algorithms.

Some was due to the use of assembly language, which at the time did

make better use of instructions (run faster) and memory (use less space) than
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Figure 3.10: Unix room, October 2005

could be achieved with compilers for high level languages. It was only in the

mid 1970s that new memory technology based on semiconductors and inte-

grated circuits became widely available at a price where one could afford the

moderate but measurable overhead of high-level languages like C.

Storage allocators like the original alloc and Doug McIlroy’s later

malloc library were used to allocate and reallocate memory dynamically as

a program was running, another way to make the most of a scarce resource.

Naturally this had to be done carefully, since the slightest mistake could

cause a program to work incorrectly (something that is not unheard of even

today, I might add, at least as I observe students in my classes). Mismanage-

ment of memory remains one of the leading causes of errors in C programs.

When a program failed badly enough, the operating system would notice

and would try to help the programmer by producing a file of the contents of

main memory—what was in the magnetic cores—from which comes the

phrase “core dump,” still used though magnetic cores long ago left the scene.

The file is still called core.
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Figure 3.11: cat(1) manual page from 1st Edition Unix

3.5 Biography: Dennis Ritchie

This summary of Dennis Ritchie’s life is adapted from a memorial that I

wrote for the National Academy of Engineering in 2012.

Dennis (Figure 3.13) was born in September 1941. His father, Alistair

Ritchie, worked for many years at Bell Labs in Murray Hill. Dennis went to

Harvard where he did his undergraduate work in physics and his graduate

work in applied mathematics. His PhD thesis topic (1968) was subrecursive

hierarchies of functions, and is tough going if one is not an expert, which I

am certainly not; Figure 3.14 shows part of one random page, taken from a

blurry copy of a draft. Explaining his career path, he said

“My undergraduate experience convinced me that I was not smart

enough to be a physicist, and that computers were quite neat. My

graduate school experience convinced me that I was not smart enough

to be an expert in the theory of algorithms and also that I liked proce-

dural languages better than functional ones.”

As Bjarne Stroustrup, the creator of C++, once said, “If Dennis had decided

to spend that decade on esoteric math, Unix would have been stillborn.”
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Figure 3.12: Magnetic core memory; 16K bits, 2K bytes (∼5.25 in, 13 cm)

Dennis had spent several summers at Bell Labs, and joined permanently

in 1967 as a member of technical staff in the Computing Science Research

Center. For the first few years, he worked on Multics. As noted earlier, Mul-

tics proved too ambitious, and as it became clear that it would not live up to

its goals, Bell Labs withdrew in 1969, leaving Ken, Dennis and colleagues

with experience in innovative operating system design, an appreciation of

implementation in high-level languages, and a chance to start over with much

more modest goals. The result was the Unix operating system and the C pro-

gramming language.

The C programming language dates from early in the 1970s. It was based

on Dennis’s experience with high-level languages for Multics implementa-

tion, but much reduced in size because most computers of the time had lim-

ited capacity; there simply wasn’t enough memory or processing power to

support a complicated compiler for a complicated language. This enforced

minimality matched Ken and Dennis’s preference for simple, uniform mecha-

nisms. C was a good match as well for real computer hardware; it was clear

how to translate it into good code that ran efficiently.
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Figure 3.13: Dennis Ritchie, ∼1981 (Courtesy of Gerard Holzmann)

C made it possible to write the entire operating system in a high level lan-

guage. By 1973, Unix had been converted from its original assembly lan-

guage form into C. This made it much easier to maintain and modify the sys-

tem. It also enabled another giant step, moving the operating system from its

original PDP-11 computer to other computers with different architectures.

Because most of the system code was written in C, porting the system

required not much more than porting the C compiler.

Dennis was a superb technical writer, with a spare elegant style, deft turns

of phrase, and often with flashes of dry wit that accurately reflected his per-

sonality. He and I wrote The C Programming Language together; it was pub-

lished in 1978, with a second edition in 1988, and has since been translated

into more than two dozen languages. Dennis’s original C reference manual

formed the basis of the ANSI/ISO standard for C that was first produced in

1988, and was a major part of the book. Without doubt, some of the success

of C and Unix can be attributed to Dennis’s writing.

With Ken Thompson, Dennis received many honors and awards for his

work on C and Unix, including the ACM Turing Award (1983), the National

Medal of Technology (1999), the Japan Prize for Information and Communi-

cations (2011), and the National Inventors Hall of Fame (posthumously in

2019).

Dennis successfully avoided any management role for many years, but

finally yielded and became head of the Software Systems department, where

he was responsible for the group that was building the Plan 9 operating
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Figure 3.14: Excerpt from Dennis Ritchie’s PhD thesis (Courtesy of Computer

History Museum)

system. Dennis stepped down from management and retired officially in

2007, but continued to come to Bell Labs almost every day until his death in

October 2011.

Dennis was modest and generous, always giving credit to others while

downplaying his own contributions. A typical example is found in the

acknowledgment section of his 1996 retrospective on the evolution of Unix:

“The reader will not, on the average, go far wrong if he reads each

occurrence of ‘we’ with unclear antecedent as ‘Thompson, with some

assistance from me.’ ”

Dennis died in October 2011. This note from his sister and brothers can

be found on his home page, which has been preserved at Bell Labs at

www.bell-labs.com/usr/dmr/www.

“As Dennis’s siblings, Lynn, John, and Bill Ritchie—on behalf of the

entire Ritchie family—we wanted to convey to all of you how deeply

moved, astonished, and appreciative we are of the loving tributes to
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Dennis that we have been reading. We can confirm what we keep

hearing again and again:

Dennis was an unfailingly kind, sweet, unassuming, and generous

brother—and of course a complete geek. He had a hilariously dry

sense of humor, and a keen appreciation for life’s absurdities—though

his world view was entirely devoid of cynicism or mean-spiritedness.

We are terribly sad to have lost him, but touched beyond words to real-

ize what a mark he made on the world, and how well his gentle per-

sonality—beyond his accomplishments—seems to be understood.”

Lynn, John, and Bill Ritchie
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Sixth Edition (1975)

“The number of Unix installations has grown to 10, with more expected.”

The Unix Programmer’s Manual, 2nd Edition, June 1972

“The number of Unix installations is now above 50, and many more are

expected.”

The Unix Programmer’s Manual, 5th Edition, June 1974

The first edition of Unix was up and running by late 1971, if we go by the

date on the manual. For the next few years, there was a new edition of the

manual roughly every six months, each time with major new features, new

tools, and new languages. The 6th edition, whose manual is dated May 1975,

was the first that found its way outside of Bell Labs to any significant degree,

and it had a major effect on the world.

Unix was first publicly described in a paper by Dennis Ritchie and Ken

Thompson, “The Unix Time-Sharing System,” that appeared in the Fourth

ACM Symposium on Operating Systems Principles in October 1973; it was

republished with minor changes in the journal Communications of the Asso-

ciation for Computing Machinery (CACM) in July 1974. The abstract begins

with a concise summary of a remarkable number of good ideas:

Unix is a general-purpose, multi-user, interactive operating system for

the Digital Equipment Corporation PDP-11/40 and 11/45 computers.

It offers a number of features seldom found even in larger operating

systems, including:

(1) a hierarchical file system incorporating demountable volumes;

(2) compatible file, device, and inter-process I/O;

(3) the ability to initiate asynchronous processes;

(4) system command language selectable on a per-user basis; and
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(5) over 100 subsystems including a dozen languages.

What were these features “seldom found even in larger operating sys-

tems,” and what was their significance? The next few sections talk about

some of them in more detail. If you’re not technically inclined, you can

safely skim the chapter; I’ve tried to summarize the important parts of each

section near the beginning so you can skip the details.

4.1 File system

The file system is the part of an operating system that manages informa-

tion on secondary storage like disks, which for many years were sophisti-

cated mechanical devices based on rotating magnetic media, and which today

are most often solid state disks and USB flash drives, integrated circuits that

have no moving parts.

We are familiar with the abstract view of this information storage through

programs like Explorer on Windows and Finder on macOS. Underneath

those is a significant amount of software to manage the information on physi-

cal hardware, keep track of where each part is, control access, make it effi-

ciently accessible for reading and writing, and ensure that it’s always in a

consistent state.

Before Multics, most operating systems provided at best complicated and

irregular file systems for storing information. The Multics file system was

much more general, regular and powerful than other file systems of the time,

but it was correspondingly complex. The Unix file system that Ken devel-

oped profited from Multics, but was significantly simpler. Its clean, elegant

design has over the years become widely used and emulated.

A Unix file is simply a sequence of bytes. Any structure or organization

of the contents of a file is determined only by the programs that process it;

the file system itself doesn’t care what’s in a file. That means that any pro-

gram can read or write any file. This idea seems obvious in retrospect, but it

was not always appreciated in earlier systems, which sometimes imposed

arbitrary restrictions on the format of information in files and how it could be

processed by programs. Doug McIlroy describes one example:

“Typically source code was a distinguished type, different from data.

Compilers could read source, compiled programs could read and write

‘data.’ Thus the creation and inspection of Fortran programs was often

walled off from the creation and inspection of other files, with com-

pletely different ways to edit and print them. This ruled out the use of

programs to generate (or even simply copy) Fortran programs.”
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Unix made no such distinctions: any program could process any file. If

applying a program to a file doesn’t make sense—for example, trying to

compile a Fortran source file as if it were C—that doesn’t hav e anything to

do with the operating system.

Unix files are organized in directories. (Other operating systems often

call these folders.) A Unix directory is also a file in the file system, but one

whose contents are maintained by the system itself, not by user programs. A

directory contains information about files, which may in turn be directories.

A Unix directory entry includes the file name within the directory, access

permissions, file size, date and time of creation and modification, and infor-

mation about where to find the contents of the file. Each directory has two

special entries named “.” (the directory itself) and “..”, the parent direc-

tory; these are pronounced “dot” and “dotdot.” The root directory is the top

of this hierarchy; its name is /. Any file can be reached by following the

path down from the root, and the root can be found from any file by going up

the sequence of .. parent directories. Thus the text for this book might be

found in /usr/bwk/book/book.txt. The system also supports the notion of a

current directory, so that filenames can be relative to the current location in

the file system, rather than having to specify a full path from the root.

Because any directory can contain subdirectories, the file system can be

arbitrarily deep. This organization of nested directories and files is called a

“hierarchical” file system. Again, though the advantages are obvious in hind-

sight, hierarchical file systems were not widely available before Multics and

then Unix. For example, some file systems limited the depth of nesting;

CTSS limited it to two lev els.

4.2 System calls

An operating system provides a set of services to programs that run on it,

services like starting and stopping programs, reading or writing information

in files, accessing devices and network connections, reporting information

like date and time, and many others. These services are implemented within

the operating system, and are accessible from running programs through a

mechanism called system calls.

In a very real sense, the system calls are the operating system, since they

define what services the system provides. There may be multiple indepen-

dent implementations of a set of system calls, as is the case with different

versions of Unix and Unix-like systems. A completely different operating

system, say Windows, could provide software to convert Unix system calls

into its own system calls. And there are sure to be system calls that are
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unique to a particular operating system even if it is Unix-like.

The first edition of Unix had just over 30 system calls, about half of which

were related to the file system. Because files contained only uninterpreted

bytes, the basic file system interface was dead simple, only five system calls

to open or create a file, read or write its bytes, and close it. These were

accessed from a C program by calling functions using statements like these:

fd = creat(filename, perms)

fd = open(filename, mode)

nread = read(fd, buf, n)

nwrite = write(fd, buf, n)

status = close(fd)

The creat system call creates a new file and sets its access permissions,

which normally would include or exclude the ability to read, write and

execute for the user, for the user’s group, and for everyone else. These nine

bits give considerable control with comparatively little mechanism. The

open system call opens an existing file; mode specifies whether the file is to

be read from or written to, and filename is an arbitrary path in the hierar-

chical file system.

The fd value that results from calling open and creat is called a file

descriptor, a  small non-negative integer that is used in subsequent reads and

writes of the file. The read and write system calls attempt to transfer a

specified number n of bytes either from the file or to the file; each function

returns the number of bytes that were actually transferred. For all of these

system calls, if a negative value (usually −1) is returned, that indicates some

kind of error.

By the way, the creat system call really is spelled that way, for no good

reason other than Ken Thompson’s personal taste. Rob Pike once asked Ken

what he would change if he were to do Unix over again. His answer? “I’d

spell creat with an e.”

Another Unix innovation was to have peripheral devices like disks, termi-

nals, and others appear as files in the file system; disks are the “demountable

volumes” mentioned in the list of features. The same system calls are used to

access devices as are used to access files, so the same code can manipulate

files and devices. Of course it isn’t that simple, since real devices have weird

properties that must be handled, so there are other system calls for dealing

with the idiosyncrasies, especially of terminals. This part of the system was

not pretty.

There are also system calls for setting a position within a file, determining

its status, and the like. These have all been embellished and occasionally

improved over 50 years, but the basic model is simple and easy to use.
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It may be hard for today’s readers to appreciate just how much of a sim-

plification all of this was. In early operating systems, all of the myriad com-

plexities of real devices were reflected through to users. One had to know all

about disk names, their physical structure like how many tracks and cylinders

they had, and how data was organized on them. Steve Johnson reminded me

of how awkward it was with the time-sharing subsystem on the main Honey-

well computer at this time:

“The Honeywell TSS system required you to enter a subsystem to cre-

ate a disk file. You were asked about 8 questions: initial size of file,

maximum size, name, device, who could read it, who could write it,

etc. Each of these had to be answered interactively. When all the

questions had been answered, the operating system was given the

information, and, likely as not, something was mistyped and the file

creation failed. That meant you got to enter the subsystem again and

answer all the questions again. It’s no wonder that when a file finally

got created, the system said ‘SUCCESSFUL!’ ”

Unix followed the example of Multics in hiding all of this irrelevant non-

sense: files were just bytes. The user determined what the bytes were, while

the operating system looked after storing and retrieving them, without expos-

ing device properties to users.

4.3 Shell

The shell is a program that runs other programs. It’s the program that lets

users run commands, and is the primary interface between users and the

operating system. When I log in to a Unix system, my keyboard is connected

to a running instance of the shell. I can type commands, usually one at a

time, and the shell runs each in turn, and after each one completes, it’s ready

for the next. So a session might look like this, where $ is a prompt that the

shell prints so I know it’s waiting for me to do something. What I type is in

this slanted font.

$ date tell me the date and time
Fri Oct 18 13:09:00 EDT 2019

$ ls list the contents of the directory
book.pdf

book.txt

$ wc book.txt count the lines, words and characters in book.txt
9918 59395 362773 book.txt

$ cp book.txt backup.txt copy book.txt to a backup file
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One very important note: the shell is an ordinary user program, not some

integral part of the operating system, another idea taken from Multics.

(That’s the “system command language selectable on a per-user basis” men-

tioned in the feature list.) Because the shell is a user program, it’s easily

replaced by a different one, which is why there are so many Unix shells. If

you don’t like the way one shell works, you can pick another or even write

your own and use it instead. Speaking of “the shell” is not specific.

That said, all Unix shells provide the same basic features, usually with the

same syntax. The most important feature is to run programs. They all also

provide filename wildcards, where pattern metacharacters like “*” are

expanded into a list of filenames that match the pattern. For instance, to run

the program wc (word count) to count the lines, words and characters in all

the files in the current directory whose names begin with book, one gives the

command

$ wc book*

The shell expands the pattern book* into all the filenames in the current

directory that match any name beginning with book, and runs wc with those

names as arguments. The wc command itself doesn’t know that the list of

filenames was specified by a pattern. It’s important that expansion is done by

the shell, not by individual programs. For many years, Microsoft’s MS-DOS

operating system didn’t work that way, so some programs did their own

expansions and others didn’t; users couldn’t count on consistent behavior.

Another major service of the shell is input/output redirection. If a pro-

gram reads from the standard input (by default the terminal), it can be made

to read from an input file instead by

$ program <infile

and if it writes to the standard output (again by default the terminal), its out-

put can be directed into an output file with

$ program >outfile

The output file is created if it doesn’t already exist. As with filename expan-

sion, the program doesn’t know that its input or output is being redirected.

This is a uniform mechanism, applied by the shell, not by individual pro-

grams, and easier to use than approaches like specifying file input and output

by parameters for filenames, as in

$ program in=infile out=outfile

A shell script is a sequence of commands that have been stored in a file.

Running an instance of the shell with this file as input runs the commands of
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the script as if they had been typed directly:

$ sh <scriptfile

A script encapsulates a command sequence. For example, for this book, I run

a sequence of simple checks that look for spelling and punctuation errors,

improper formatting commands, and other potential gaffes. Each of these

checks runs a program. I could type the commands over and over again,

exactly the same each time. But instead, I can put the sequence of commands

in a single script file called check and thus can check the book by running a

single command. Other scripts print the book and make a backup copy.

These scripts are in effect new Unix commands, though highly specialized

to me and this particular book. Such personal commands are a common use

of shell scripts, a way to create shorthands for one’s own frequent computa-

tions. I still use some scripts that I wrote 30 or 40 years ago, and this is not

at all unusual among long-time Unix users.

The final step in making shell programs fully equivalent to compiled pro-

grams was to make it so that if a file was marked executable, it would be

passed to a shell for execution. In this way, shell scripts became first-class

citizens, indistinguishable from compiled programs when they were

executed:

$ check book.txt

Shell scripts do not replace compiled programs, but they are an important

part of a programmer’s toolkit, both for personal use and for larger tasks. If

you find yourself doing the same sequence of commands over and over again,

then you put them into a shell script and thus automate away some drudgery.

If a shell script proves to be too slow, it can be rewritten in another language.

We’ll see more of the power of shell scripts as we examine pipes in the next

section.

4.4 Pipes

Pipes are perhaps the single most striking invention in Unix. A pipe is a

mechanism, provided by the operating system and made easily accessible

through the shell, that connects the output of one program to the input of

another. The operating system makes it work; the shell notation to use it is

simple and natural; the effect is a new way of thinking about how to design

and use programs.

The idea of connecting programs has been around for a long while. One

of the clearest statements in the Unix context appeared in an internal
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document that Doug McIlroy wrote in 1964, advocating, among other things,

the idea of screwing programs together “like garden hose.” Figure 4.1 is

from a well-worn page that hung on the wall in my office at Bell Labs for 30

years. By the way, notice the typing errors and the generally terrible quality.

This illustrates what typewritten documents often looked like. The bottom

part of the figure is a corrected transcription:

Summary--what’s most important

To put my strongest concerns in a nutshell:

1. We should have some ways of coupling programs like

garden hose--screw in another segment when it becomes

necessary to massage data in another way.

Figure 4.1: Doug McIlroy’s pipe idea (1964)

Doug wanted to allow arbitrary connections in a sort of mesh of pro-

grams, but it was not obvious how to describe an unconstrained graph in a

natural way, and there were semantic problems as well: data that flowed

between programs would have to be queued properly, and queues could

explode in an anarchic connection of programs. And Ken couldn’t think of

any real applications anyway.

But Doug continued to nag and Ken continued to think. As Ken says,

“One day I got this idea: pipes, essentially as they are today.” He added a

pipe system call to the operating system in an hour; he describes it as “super

trivial” given that the mechanisms for I/O redirection were already there.

Ken then added the pipe mechanism to the shell, tried it out, and called

the result “mind-blowing.”

The pipe notation was simple and elegant, a single character (the vertical

bar | ) between a pair of commands. So, for example, to count the number of

files in a directory, pipe the output of ls (one line per file) into the input of

wc (counts the lines):

$ ls | wc
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It is often appropriate to think of a program as a filter that will read data

in, process it in some way, and write the output. Sometimes this is perfectly

natural, as in programs that select or mutate or count things on the fly, but

sometimes the filter does not operate on the fly. For example, the sort com-

mand necessarily has to read all its input before it can produce any output,

but that’s irrelevant—it still makes sense to package it as a filter that can fit

into a pipeline.

Ken and Dennis upgraded every command on the system in a single night.

The major change was to read data from the standard input stream when

there were no input filename arguments. It was also necessary to invent

stderr, the standard error stream. The standard error was a separate output

stream: error messages sent to it were separated from the standard output and

thus would not be sent down a pipeline. Overall, the job was not hard—most

programs required nothing more than eliminating extraneous messages that

would have cluttered a pipeline, and sending error reports to stderr.

The addition of pipes led to a frenzy of invention that I remember vividly.

I don’t hav e an exact date but it would have been in the second half of 1972,

since pipes were not in the second edition of the manual (June 1972) but

were present in the third edition (February 1973).

Everyone in the Unix room had a bright idea for combining programs to

do some task with existing programs rather than by writing a new program.

One of mine was based on the who command, which lists the currently

logged-in users. A command like who isn’t terribly relevant today when

most people work on their own computer, but since the essence of time-shar-

ing was sharing the same computer, it was helpful to know who else was

using the system at the same time. Indeed, who added to the sense of com-

munity: you could see who was also working, and perhaps get help if you

had a problem, even if both parties were at their homes late at night.

The who command prints one line for each logged-in user, grep finds all

occurrences of a specific pattern, and wc counts the number of lines, so these

pipelines report the state of logged-in users.

who # who is logged in?

who | wc # how many are logged in?

who | grep joe # is joe logged in?

who | grep joe | wc # how many times is joe logged in?

To see what an improvement pipes were, consider how the last task would be

performed without pipes, using input and output redirection to files:
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who >temp1

grep joe <temp1 >temp2

wc <temp2

followed by removing the temporary files. Pipes make this into a single com-

mand without temporary files.

Ken’s favorite pipe example was a speaking desk calculator that used Bob

Morris’s dc calculator program. Ken’s program number printed numbers as

words (“127” became “one hundred and twenty seven”), and speak synthe-

sized speech from its input. As Ken said in an interview in 2019,

“You typed 1 2 + into dc, which was piped to number, which was

piped to speak, and it said ‘four.’ ”

[Laughter]

“I was never good at math.”

Pipes are one of the foremost of Unix contributions, and obvious only in

retrospect. As Dennis said in “The Evolution of the Unix Time-sharing Sys-

tem” in 1984,

“The genius of the Unix pipeline is precisely that it is constructed from

the very same commands used constantly in simplex fashion. The

mental leap needed to see this possibility and to invent the notation is

large indeed.”

4.5 Grep

Unix began life as a commandline system, that is, one where users type

commands to run programs, rather than pointing at and clicking icons with a

mouse, as is normal when using Windows or macOS. A commandline inter-

face is not as easy as point and click for novices, but in the hands of someone

with even moderate experience, it can be far more effective. It allows for au-

tomation that’s not possible with a graphical interface: sequences of com-

mands can be run from scripts and applied to large numbers of files with a

single command.

Unix has always had a rich collection of small commandline tools, that is,

programs that handle simple frequently occurring tasks. Half a dozen com-

mands manipulate the file system, like ls for listing the files in a directory,

rather like Finder on a Mac or Explorer on Windows; cat and cp for copy-

ing files in various ways; mv (“move”) for renaming; and rm for removing

files. There are commands for processing file contents, like wc for counting
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things, sort for sorting files, plus a handful for comparing files, another few

for transformations like case conversion, and some for selecting parts of files.

(Unix users will recognize uniq, cmp, diff, od, dd, tail, tr, and

comm.) Add another dozen tools that don’t fit into those categories, and you

have a repertoire of 20 or 30 commands that let you do all kinds of basic

tasks easily.

In effect, the tools are verbs in a language, and files are the nouns that the

verbs apply to. The language is often irregular, and each command has

optional arguments that modify its behavior; for example, sort normally

sorts by line in alphabetic order, but arguments can change that so it sorts in

reverse order, numerically, on specific fields, and so on.

To use Unix well, one must learn what amounts to a family of irregular

verbs, just as for natural languages. Naturally there are frequent complaints

about the historical irregularities, but occasional attempts to rationalize them

have for the most part not been very successful.

The prototypical tool, the command that started us thinking about “tools”

more than just “programs,” was grep, the pattern-searching program origi-

nally written by Ken Thompson. As Ken said about grep in 2019,

“I had it written but I didn’t put it in the central repository of programs

because I didn’t want people to think that I dictated what was there.

Doug McIlroy said ‘Wouldn’t it be great if we could look for things in

files?’ I said ‘Let me think about it overnight’ and the next morning I

showed him the program that I had written earlier. He said ‘That’s

exactly what I wanted.’

Since then grep has become a noun and a verb; it’s even in the OED.

The hardest part was naming it; it was originally ‘s’, for search.”

The name grep comes from a command in the ed text editor, g/re/p, that

prints all lines that match the regular expression pattern re; the Oxford

English Dictionary entry for grep (Figure 4.2) has it right. (Since the OED

has blessed grep as a legitimate English word, I’m going to use it without

special fonts or capitalization.)

My personal favorite grep story comes from a day in 1972 when I was

called by someone at the Labs who said

“I noticed that when I hold my new pocket calculator upside down,

some of the numbers make letters; for example, 3 becomes E and 7

becomes L. I know you guys have a dictionary on your computer. Is

there any way you can tell me what words I can make on my calculator
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Figure 4.2: OED entry for grep

when I hold it upside down?”

Figure 4.3 shows what he had in mind.

Being in a research group, it felt good to be able to help someone who had

a really practical problem. So I asked him what letters he could make when

he held his calculator upside down, and he said “BEHILOS”. I turned to my

keyboard and typed this command:

grep ’ˆ[behilos]*$’ /usr/dict/web2

The file /usr/dict/web2 is the word list from Webster’s Second Interna-

tional dictionary—234,936 words, one per line—and the cryptic string of

characters between quotes is a regular expression or pattern that in this case

specifies lines that contain only arbitrary combinations of any of these seven

letters and nothing else.

Out came the most amazing list, the 263 words in Figure 4.4. I’m a native

speaker of English, but that list has a fair number of words I’ve nev er seen
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Figure 4.3: BEHILOS on a calculator

before. In any case, I printed them out and sent them to the guy. I think he

must have been satisfied; I never heard from him again. But he left me with a

great story and a wonderful demonstration of the value of tools like grep and

notations like regular expressions.

Over time, the word grep became a noun, a verb, a gerund (grepping), and

part of everyday speech in the Unix community. Hav e you ever grepped your

apartment for your car keys? Bumper stickers and t-shirts riffed on the

AT&T commercial that invited people to “reach out and touch someone”:

“Reach out and grep someone.”

Arno Penzias, Nobel Prize winner and, as vice president of Research, my

boss three levels up, called me one day to ask whether it was safe for him to

use this phrase in a public talk.

4.6 Regular expressions

I’ve used the phrase “regular expression” without really explaining it. A

regular expression is a notation for specifying a pattern of text. It could be as

simple as a word like expression or a phrase like regular expression or some-

thing significantly more complicated. In effect, a regular expression is a

small language for describing text patterns. In the usual notations, a word or

phrase is a regular expression that stands for itself in text, and a regular
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b be bebless beboss bee beeish beelol

bees bel belee belibel belie bell belle

bes besee beshell besoil bib bibb bibble

bibi bibless bilbie bilbo bile bilio bill

bilo bilobe bilsh bios biose biosis bis

bleb blee bleo bless blibe bliss blissless

blo blob bo bob bobbish bobble bobo

boho boil bole bolis boll bolo boo

boob boohoo bool boose bose bosh boss

e ebb eboe eel eelbob eh el

elb ell elle els else es ess

h he heel heelless hei heii helbeh

hele helio heliosis hell hellhole hellish hello

heloe helosis hi hie hill his hish

hiss ho hob hobbil hobble hobo hoe

hoi hoise hole holeless holl hollo hoose

hoosh hose hosel hoseless i ibis ibisbill

ie ihi ill illess illish io is

isle isleless iso isohel issei l lee

lees lei less lessee li libel libelee

lie liesh lile lill lis lish lisle

liss lo lob lobbish lobe lobeless lobo

lobose loess loll loo loose loosish lose

losel losh loss lossless o obe obese

obi oboe obol obole obsess oe oes

oh ohelo oho oii oil oilhole oilless

oleo oleose olio os ose osse s

se see seel seesee seise sele sell

sellie sess sessile sh she shee shell

shi shiel shies shih shill shilloo shish

sho shoe shoebill shoeless shole shoo shooi

shool si sib sie sil sile sill

silo siol sis sise sisel sish sisi

siss sissoo slee slish slob sloe sloo

sloosh slosh so sob soboles soe soh

soho soil soilless sol sole soleil soleless

soles soli solio solo sool sooloos sosh

soso sosoish soss sossle

Figure 4.4: Make these on your calculator upside-down

expression recognizer will find that word wherever it occurs.

Regular expressions also make it possible to specify more complicated

patterns by giving special meanings to some characters, called metacharac-

ters. For example, in grep, the metacharacter “.” will match any single char-

acter, and the metacharacter “*” will match any number of repetitions of the
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preceding character, so the pattern (.*) will match any sequence of charac-

ters enclosed in parentheses.

Unix has had a long love aff air with regular expressions, which are perva-

sive in text editors, in grep and its derivatives, and in many other languages

and tools. Regular expressions of a slightly different flavor are also used in

filename patterns as seen in shell “wildcards” that match groups of filenames.

Ken Thompson’s QED editor on Multics and later the GE 635 (where I

first encountered it) used regular expressions, and Ken invented a very fast

algorithm that allowed it to process arbitrarily complicated expressions

quickly. The algorithm was even patented. QED was sufficiently powerful

that in principle it was possible to write any program just using editor com-

mands (though no one in their right mind would do so). I even wrote a tuto-

rial on QED programming; that was largely wasted effort, but it started me

writing such documents.

QED was overkill for most purposes. The Unix ed text editor that Ken

and Dennis wrote originally and several other people subsequently modified

(even me) was much simpler than QED, but it too had regular expressions.

Since grep was derived from ed, its regular expressions were the same as

those in ed.

A variant style of regular expressions is used for filename wildcards.

Although wildcards are interpreted by the shell, because primary memory on

the PDP-7 was so limited, the first implementation was a separate program

called glob (for “global”) called by the shell, and the act of generating an

expanded list of filenames from a pattern was called “globbing.” The name

glob lives on in libraries in several programming languages today, including

Python.

One of Al Aho’s early contributions to Unix was an extension of grep that

allowed a richer class of regular expressions, for example making it possible

to search for alternatives like this|that. Al called the program egrep, for

“extended grep.”

It’s worth saying a bit more about egrep, since the story behind it is an

excellent example of the kind of interplay between theory and practice, and

of typical interactions among members of 1127, that led to so much good

software. This story comes from Doug McIlroy:

“Al Aho’s first egrep was a routine implementation of an algorithm

from The Design and Analysis of Computer Algorithms by Aho,

Hopcroft and Ullman. I promptly used it for a calendar program that

used a huge automatically generated regular expression to recognize

date patterns like ‘today,’ ‘tomorrow,’ ‘until the next business day,’ and
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so on, represented in a large range of date styles.

To Al’s chagrin, it took something like 30 seconds to compile into a

recognizer that would then run in no time at all.

He then came up with the brilliant strategy of generating the recog-

nizer lazily as parts of it were needed, rather than all in advance, so

only a tiny fraction of the exponentially vast number of states were

ev er constructed. That made a tremendous difference: in practice,

egrep always ran fast no matter how complex the pattern it was dealing

with. So egrep is distinguished by technical brilliance, invisible unless

you know how badly standard methods can perform.”

This is a common Unix story: a real problem from a real user, deep knowl-

edge of relevant theory, effective engineering to make the theory work well in

practice, and continuous improvement. It all came together because of broad

expertise in the group, an open environment, and a culture of experimenting

with new ideas.

4.7 The C programming language

New programming languages have been a big part of Unix since the very

beginning.

One of the most important contributions of Multics was its attempt to

write the operating system in a high-level language, PL/I. PL/I was created

in 1964 by IBM to try to combine all the good ideas from Fortran, Cobol and

Algol into a single language. It turned out to be a grand example of the sec-

ond system effect. The language was too big and complicated for most pro-

grammers, it was hard to compile, and a working compiler for Multics was

not delivered on time. As an interim measure, Doug McIlroy and Doug East-

wood created a simplified subset called EPL (“Early PL/I”) for use with Mul-

tics, but it was still a complicated language.

BCPL (“Basic Combined Programming Language”) was another lan-

guage intended for system programming. It had been designed by Martin

Richards, a professor at the University of Cambridge, and he wrote a com-

piler for it while visiting MIT in 1967. BCPL was much simpler than any

dialect of PL/I, and was well suited for writing operating system code. Mem-

bers of the Bell Labs Multics effort were very familiar with BCPL.

When the Labs pulled out of Multics, Ken Thompson decided that “no

computer is complete without Fortran,” so he started to write a Fortran com-

piler for the PDP-7. This proved too tough, since PDP-7 Unix had only 4K

18-bit words (8 KB) of primary memory for user programs like a compiler.
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Ken kept redesigning, eventually coming up with a language that did fit the

PDP-7 and was much closer to BCPL than to Fortran. He called it B. As

Dennis Ritchie explained in “The Development of the C Language” in 1993,

“B can be thought of as C without types; more accurately, it is BCPL

squeezed into 8K bytes of memory and filtered through Thompson’s

brain. Its name most probably represents a contraction of BCPL,

though an alternate theory holds that it derives from Bon, an unrelated

language created by Thompson during the Multics days. Bon in turn

was named either after his wife Bonnie, or (according to an encyclope-

dia quotation in its manual), after a religion whose rituals involve the

murmuring of magic formulas.”

Up to this point, the computers in our story have been “word-oriented,”

not “byte-oriented.” That is, they manipulate information in chunks that are

significantly larger than a single byte. The IBM 7090 and similar computers

like the GE series manipulated information naturally only in chunks that

were 36 bits (roughly four bytes); PDP-7 chunks were 18 bits (two bytes).

Word-oriented computers were clumsy for processing bytes individually or in

sequences: programmers had to use library functions or go through program-

ming contortions to access the individual bytes that were packed into the

larger chunks.

By contrast, the PDP-11 was byte-oriented: its fundamental unit of pri-

mary memory was the 8-bit byte, not the 18- or 36-bit words of earlier com-

puters, though it could also manipulate information in larger chunks like 16-

and 32-bit integers and 16-bit addresses.

B was a good fit for word-oriented computers like the PDP-7 but not for

byte-oriented ones like the PDP-11, so when the PDP-11 arrived, Dennis

started to enhance B for the new architecture and to write a compiler for it.

The new language was called “NB,” for “New B,” and eventually it became

C.

One of the main differences was that where B was typeless, C supported

data types that matched the data types that the PDP-11 provided: single

bytes, two-byte integers, and eventually floating-point numbers with four or

eight bytes. And where languages like BCPL and B treated pointers (mem-

ory addresses) and integers as the same, C formally separated them, though

for many years programmers unwisely treated them as if they were the same

size.

One of C’s novel contributions to programming languages was the way

that it supported arithmetic operations on typed pointers. A pointer is a value

corresponding to an address, that is, a location in primary memory, and it has
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a type, the type of the objects that it will point to. If that location corre-

sponds to an element of an array of that particular type of object, then in C,

adding 1 to the pointer yields the address of the next element of the array.

Although careless use of pointers is a recipe for broken code, pointer arith-

metic is natural and works well when used correctly.

It had been clear for some time that Unix should be converted from

assembly language to a higher level language, and C was the obvious choice.

Ken tried three times in 1973 to write the kernel in C but it proved too diffi-

cult until Dennis added a mechanism for defining and processing nested data

structures (struct) to the language. At that point, C was sufficiently

expressive for writing operating system code, and Unix became mostly a C

program. The 6th edition kernel has about 9,000 lines of C and about 700

lines of assembly language for machine-specific operations like setting up

registers, devices and memory mapping.

The first widely distributed description of C was The C Programming

Language (Figure 4.5), a book that Dennis and I published in 1978; a second

edition was published in 1988.

I had learned B rather superficially, and for my own amusement wrote a

tutorial to help others to learn it too. When Dennis created C, it was easy to

modify the B tutorial to make one for C. The C tutorial proved to be popular,

and as Unix and C spread, I thought that it would be worth trying to write a

book about C. Naturally I asked Dennis if he would write it with me. He

might have initially been reluctant, but I twisted his arm harder and eventu-

ally he agreed. Getting Dennis to work on the book was the smartest or

maybe just the luckiest thing I ever did in my technical career—it made the

book authoritative because Dennis was a co-author, and it allowed me to

include his reference manual.

I wrote the first drafts of most of the tutorial material originally, but Den-

nis wrote the chapter on system calls, and of course provided the reference

manual. We made many alternating passes over the main text, so that’s a

blend of our styles, but the reference manual stayed almost exactly as it had

been, a pure example of Dennis’s writing. It describes the language with

what Bill Plauger once called “spine-tingling precision.” The reference man-

ual is like C itself: precise, elegant, and compact.

The first official C standard, from ANSI, the American National Stan-

dards Institute (and also from ISO, the International Standards Organization)

was completed in 1989. Its description of the language was directly based on

Dennis’s reference manual. Dennis was involved in the early stages of the

first C standard, where his standing as the creator of the language gav e his

opinions weight, and he was able to head off one or two really bad proposals.
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Figure 4.5: Cover of K&R first edition, 1978

The C language is important, but so also is its use of a standard library

that provides the basic facilities that programmers need for operations like

formatted input and output, string processing, and mathematical functions. C

came with a modest-sized library of such functions, so that programmers did

not need to reinvent each routine when they wrote a new program.

The largest library component provided formatted output, familiar today

to all programmers through C’s printf function, which has been adopted

into many other languages. Mike Lesk’s portable I/O package, written in

1972 so that programs could be easily moved to and from Unix, contained

the first version of printf and also included scanf for parsing formatted

input. These were reworked and included with the C compiler.

Although printf and scanf have had extensions since, the core set of

conversions work as they did in the early 1970s, as do most of the other func-

tions in the library. Today, the standard library is just as much a part of the C

standard as is the language specification itself.

It’s interesting to contrast the C approach to other languages. In Fortran

and Pascal, for example, input and output are part of the language, with spe-

cial syntax for reading and writing data. Some other languages don’t include
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input and output and at the same time don’t provide a standard library, which

is probably the least satisfactory choice.

C has been very successful, one of the mostly widely used languages of

all time. Although it began life on PDP-11 Unix, it has spread to essentially

ev ery kind of computer that exists. As Dennis said in a paper for the second

History of Programming Languages conference in 1993,

“C is quirky, flawed, and an enormous success. While accidents of

history surely helped, it evidently satisfied a need for a system imple-

mentation language efficient enough to displace assembly language,

yet sufficiently abstract and fluent to describe algorithms and interac-

tions in a wide variety of environments.”

Of course there are many programming languages, often with noisy

adherents and detractors, and C comes in for its share of criticism. It remains

the core language of computing, however, and is almost always in the top two

or three in lists of language popularity, influence and importance. To my

mind, no other language has ever achieved the same balance of elegance,

expressiveness, efficiency and simplicity. C has also inspired the basic syn-

tax of many other languages, including C++, Java, JavaScript, Awk and Go.

It has been an exceptionally influential contribution.

4.8 Software Tools and Ratfor

By mid to late 1975, Unix had been publicly described at conferences and

in journal papers and the 6th edition was in use at perhaps a hundred univer-

sities and a limited number of commercial operations. But most of the tech-

nical world still used Fortran and ran on operating systems from hardware

vendors, like IBM’s System/360. Locally, most programmers at Murray Hill

used the GE 635 with GE’s batch operating system GECOS (renamed GCOS

when GE sold its computer business to Honeywell in 1970).

By 1973, I had started to program in C regularly, but I was still writing

Fortran as well. Although Fortran was fine for numerical computation, its

control-flow statements were almost non-existent and it was constrained by

its origin as a punchcard-based language from the 1950s. By contrast, C con-

trol flowed naturally, so to speak.

Accordingly, I wrote a simple compiler that would translate a dialect of

Fortran that looked like C into valid Fortran. I called it Ratfor, for “rational

Fortran.” Ratfor converted C control flow, with if-else, for, while, and braces

for grouping, into Fortran’s IF and GOTO statements and its one looping
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construct, the DO loop. The preprocessor also provided notational con-

veniences like free-form input (not the rigidly formatted 80-column card

images that Fortran still required), a convenient comment convention, and

natural logical and relational operators like < and >= instead of Fortran’s

klunky .LT. and .GE. forms.

As a short example, here’s the Fortran program of Chapter 1 in one of

several ways that it might be written in Ratfor:

# make v an identity matrix

do i = 1, n

do j = 1, n

if (i == j)

v(i,j) = 1.0

else

v(i,j) = 0.0

Ratfor was the first example of a language that based its syntax on C.

Writing Fortran in Ratfor was, if I do say so myself, infinitely more pleasant

than writing standard Fortran. Ratfor didn’t change Fortran semantics or data

types—it had no features for processing characters, for instance—but for

anything where Fortran would be a good choice, Ratfor made it better. Free-

form input and C-like control flow made it feel almost like writing in C.

In a tour de force of both theory and practice, Brenda Baker created a pro-

gram called struct that translated arbitrary Fortran programs into Ratfor.

Brenda showed that almost any Fortran program has a well-structured form;

there is essentially a unique best way to render it in Ratfor. People who used

struct found that the Ratfor version was almost always clearer than the

Fortran they had originally written.

Bill Plauger and I decided to write a book to evangelize the Unix tools

philosophy for a wider audience: programmers who were writing Fortran on

non-Unix systems. Software Tools, which was published in 1976, presented

Ratfor versions of standard Unix tools: file comparison, word counting, grep,

an editor like ed, a  roff-like text formatter, and a Ratfor preprocessor itself,

all written in Ratfor.

Our timing was about right; the book sold moderately well and a Software

Tools User Group sprung up, spearheaded by Debbie Scherrer, Dennis Hall

and Joe Sventek at Lawrence Livermore Labs. They polished and refined the

programs, added new tools of their own, made distributions of the code,

organized conferences, and kept everything running smoothly for years.

Their code was ported to more than 50 operating systems and the user group

remained active and influential until it disbanded in the late 1980s.
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In 1981 Bill and I published a version of the Tools book based on Pascal,

which at the time was popular as a teaching language in universities. Pascal

had good properties, including sensible control flow and recursion, both of

which were missing from Fortran.

Unfortunately, it also had some not so good properties, like awkward

input and output and almost unusable character strings, which I described in

a paper titled “Why Pascal is Not My Favorite Programming Language.” I

submitted the paper to a journal, but it was rejected as too controversial, or

perhaps not substantial enough. It never was published, but in spite of that,

it’s cited surprisingly often.

In any case, as C and Unix became more widely available, Pascal’s seri-

ous limitations made it less and less popular, so Software Tools in Pascal was

not widely read. In hindsight, a C version would have had far more impact,

both in the short term and in the long run.

4.9 Biography: Doug McIlroy

Rob Pike has called Doug McIlroy “the unsung hero of Unix,” and I

agree. Ken Thompson says that Doug is smarter than everyone else, which

also seems accurate, though Doug himself says “I’ll leave to others to assess

how smart I may be, but I know that many of BTL’s practicing mathemati-

cians were much smarter.” Suffice it to say that there were many outstanding

people at the Labs, the imposter syndrome was not unknown, and one was

continuously stretched trying to keep up.

No matter who is right here, Unix might not have existed, and certainly

would not have been as successful, without Doug’s good taste and sound

judgment of both technical matters and people.

Doug received his undergraduate degree in physics from Cornell in 1954

and his PhD in applied mathematics from MIT in 1959. He too worked for a

summer at Bell Labs, joined permanently in 1958, and became head of the

Computing Techniques Research department in 1965, two years before I first

met him. As described earlier, I spent the summer of 1967 as an intern in

Doug’s department, nominally working on a storage allocator problem that

he suggested but in fact doing my own thing. One of his many good qualities

as a manager was that he wasn’t bothered by that at all.

I’ve already mentioned Doug’s early language work on PL/I and EPL.

Once Unix was underway, he wrote a wide variety of fundamental software.

His storage allocator malloc was used for many years, and his research on

allocators affected subsequent work. He also wrote a bunch of commands;

the list on his web page at Dartmouth includes spell, diff, sort, join,
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graph, speak, tr, tsort, calendar, echo, and tee.

Some of these are small, like echo, while some are large, like sort and

diff, but most are central to Unix computing and many are used to this day.

Of course pipes were his idea too, though the final version used Ken’s syntax,

and their existence was due to Doug’s ongoing lobbying for such a mecha-

nism.

His version of spell made effective use of a dictionary and heuristics

for identifying parts of speech to find potential spelling mistakes, using only

meager resources.

Doug’s version of diff implements an efficient algorithm (invented

independently by Harold Stone and Tom Szymanski) for comparing two text

files, finding a minimal sequence of changes that will convert one into the

other. This code is at the heart of source code control systems that manage

multiple versions of files. Such systems most often work by storing one ver-

sion and a set of diffs, generating other versions by running the diff algo-

rithm. This is also used in the patch mechanism that’s used for updating pro-

grams—rather than sending a new version of a program to someone, send a

sequence of ed editing commands, computed by diff, that will convert the

old version into the new.

The diff program is another nice example of how good theory can com-

bine with good practical engineering to make a fundamental tool. The output

that diff produces is readable by both people and programs; output written

for either one or the other would be far less useful. It is also a simple exam-

ple of a program that writes a program, and its output is a fine little language.

Quite early in Unix days, 1127 bought a novel device, a Votrax voice syn-

thesizer that converted phonemes into sound. Doug created a set of rules for

converting arbitrary English text into phonemes, and wrote a program called

speak that used the rules to generate Votrax input. English spelling is of

course notoriously irregular, so no set of rules can do a perfect job. The out-

put of speak was often imperfect, sometimes funny (my name rhymed: “Br-

I-an Kern-I-an”), but almost always accurate enough to be genuinely useful.

The program was just another command, so it could be used by anyone

without prearrangement; text sent to speak was played through a loud-

speaker in the Unix room. This led to any number of odd services. For

instance, every day at 1PM, the Votrax would say

“Lunchtime, lunchtime, lunchtime. Yummy, yummy, yummy.”

as a reminder to the inhabitants that it was time to head off to the cafeteria

before it closed at 1:15.
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There was also a service that monitored incoming telephone lines and

when one rang (silently) would announce

“Phone call for Doug”

or whoever; in a shared space it was much less distracting than frequently

ringing phones.

Doug’s interests were broad and deep. Among other things, he was an

expert in map projections, which are a specialized form of mathematics. His

map program provided several dozen projections, and to this day, he’s still

producing new ones that show up in Christmas cards sent to friends and on

his Dartmouth web page (Figure 4.6).

Figure 4.6: One of Doug McIlroy’s many maps

Doug was a superb technical critic, often the first person to try out some

new program or idea. He would experiment at the earliest possible time and,

since he had excellent taste, his opinions on what was good and what needed

to be fixed was invaluable. There was a steady flow of people to his office to

get advice and critical comments on ideas, algorithms, programs, docu-

ments—pretty much anything. Bjarne Stroustrup used to drop in on me to

discuss C++ and explain some new idea, then move a few doors along the

corridor to Doug’s office to get serious feedback on the language design.
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Figure 4.7: Doug McIlroy and Dennis Ritchie, May 2011 (Wikipedia)

Doug was usually the first person to read drafts of papers or manuals,

where he would deftly puncture rhetorical balloons, cut flabby prose, weed

out unnecessary adverbs, and generally clean up the mess. In Mike

Mahoney’s oral history of Unix (1989), Al Aho says of Doug,

“He understood everything that I was working on, with just the most

fragmentary descriptions. And he essentially taught me to write, too.

I think he’s one of the finest technical writers that I know of. He has a

flair for language, and a flair for economy of expression that is remark-

able.”

Doug was the outside reader on my thesis, where he greatly improved the

organization and exposition. He also read multiple drafts of all the books

that I co-authored with others at the Labs, always making them better. He

refined and polished the manual pages for commands, and he pulled together
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and organized the contents of the manuals for the 8th through 10th editions

of Unix. He did all of this with enthusiasm and care, at some cost to his own

research.

Doug stepped down from his management role in 1986 and retired from

the Labs in 1997, heading off to teach at Dartmouth. Figure 4.7 is a picture

taken at Bell Labs in Murray Hill during a 2011 celebration of the Japan

Prize awarded to Ken and Dennis.
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Seventh Edition (1976-1979)

“It was really with v7 that the system fledged and left the research nest.

V7 was the first portable edition, the last common ancestor of a radiative

explosion to countless varieties of hardware. Thus the history of v7 is part

of the common heritage of all Unix systems.”

Doug McIlroy, A Research Unix Reader, 1986.

The 6th edition of Unix was a great base for software development, and

the tools that came with it made programming fun and productive. Some

pieces were in place well before the 6th edition, while others came along

afterwards. In this chapter, we’ll see several threads of software development

in 1127 that culminated in the 7th edition, which was released in January,

1979, nearly four years after the 6th edition.

Logically and chronologically, some of this material should come after

the next chapter, which describes the spread of Unix outside of Center 1127,

but the story seems more cohesive if I talk about the 7th edition first. And as

Doug McIlroy noted in the epigraph above, the 7th edition was the source of

much of the heritage shared by all Unix systems.

One of the major themes of Unix and of this chapter is the flowering of

influential languages, some aimed at conventional programming, some spe-

cial-purpose or domain-specific, and some declarative specification lan-

guages. I’ll probably spend more time on this topic than many readers may

care about, but it’s been my area of interest for many years. I’ll try to

describe the important bits early in each section so that you can safely skip to

the end.

It’s also worth noting that 6th edition Unix was strictly a PDP-11 operat-

ing system at the beginning of this period; by 1979, the 7th edition was a por-

table operating system that ran on at least four different kinds of processors,



88 CHAPTER 5: SEVENTH EDITION

of which the DEC VAX-11/780 was the most popular. I’ll hav e more to say

about portability in the next chapter, but for now it’s important to notice that

Unix had quietly evolved from being a PDP-11 system to one that was com-

paratively independent of specific hardware.

5.1 Bourne shell

I/O redirection and pipes in the 6th edition shell made it easy to combine

programs to do some task, originally by typing a sequence of commands and

then collecting them in a file—a shell script—so they could be run as a single

command.

The 6th edition shell had an if statement for conditionally executing a

command, a goto statement for branching to another line of a script file, and

a way to label a line in a script (the ":" command, which did nothing) so it

could be branched to. Taken together, these could be used to make loops so

in principle the 6th edition shell could be used to write complicated scripts.

In practice, however, the mechanisms were awkward and fragile.

As I’ll describe in the next chapter, John Mashey, a member of the Pro-

grammer’s Workbench (PWB) group, had added a number of features to his

version of the 6th edition shell that made it much better for programming: a

general if-then-else statement for testing conditions, a while statement for

looping, and variables for storing information within a shell file.

In 1976, Steve Bourne, who had recently joined 1127, wrote a new shell

that incorporated the PWB shell features, along with major enhancements of

his own. The goal was to retain the easy interactive nature of the existing

shell, but also make it a fully programmable scripting language. Steve’s shell

provided several control-flow constructs, including if-then-else, while, for

and case. It also included variables, some of which were defined by the shell

itself and others that could be defined by users. Quoting mechanisms were

enhanced. Finally it was modified so it could be a filter in a pipeline just like

any other program. The result, which was simply called sh, quickly replaced

the 6th edition shell.

The control-flow syntax of the new shell was unusual, since it was based

on Algol 68, a language favored by Steve though not many others in 1127.

For example, Algol 68 used reversed words as terminators, like fi to termi-

nate if and esac to terminate case. But since od was already taken (for

the octal dump command), do was terminated by done.
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for i in $* loop over all arguments
do

if grep something $i

then

echo found something in $i

else

echo something not found in $i

fi

done

The conditions tested by the if and while statements were the status

returns from programs, that is, numeric values that a program could use to

report results like whether it had worked properly. Most programs at the time

were cavalier about returning sensible status, since it had rarely mattered

before. So Steve set his shell to print an irritating message each time a pro-

gram didn’t produce a sensible status. After a week of this automated nag-

ging, most programs had been upgraded to return meaningful status values.

Steve’s shell also significantly enriched I/O redirection. The BUGS sec-

tion of the 6th edition shell had said “There is no way to redirect the diagnos-

tic output.” One especially useful new shell feature was a way to separate the

standard error stream (by default file descriptor 2) from the standard output

(file descriptor 1), so that the output of a script could be directed to a file

while error messages went somewhere else, usually the terminal:

prog >file # stdout to file, stderr to terminal

prog 2>err # stdout to terminal, stderr to err

prog 1>file 2>err # stdout to file, stderr to err

prog >file 2>&1 # merge stderr with stdout

By this point, the shell had become a real programming language, suitable

for writing pretty much anything that could reasonably be formulated as a

sequence of commands. It could often do this well enough that there was no

need to write a C program.

Over the years, more features have been added, particularly in Bash, the

“Bourne Again Shell” that is now the de facto standard shell for most Linux

and macOS users. Although personal shell scripts tend to be small and sim-

ple, the source code for major tools like compilers is often distributed with

configuration scripts of 20,000 or more lines. These scripts run programs

that test properties of the environment, like the existence of libraries and

sizes of data types, so they can compile a version that has been tuned to the

specific system.
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5.2 Yacc, Lex, Make

We use language to communicate, and better languages help us to com-

municate more effectively. This is especially true of the artificial languages

that we use to communicate with computers. A good language lowers the

barrier between what we want to say (“just do it”) and what we have to say to

get some job done. A great deal of research in computing is concerned with

how to create expressive languages.

Seventh edition Unix offered a diversity of language-based tools, some

rather unconventional. I think it’s fair to say that the majority of those lan-

guages would not exist had it not been for tools, especially Yacc, that made it

easy for non-experts to create new languages. This section describes the lan-

guage-building tools. The overall message is that Unix tools facilitated the

creation of new languages and thus led to better ways to communicate with

computers. You can safely skip the details, but the message is important.

Computer languages are characterized by two main aspects, syntax and

semantics. Syntax describes the grammar: what the language looks like,

what’s grammatically legal and what’s not. The syntax defines the rules for

how statements and functions are written, what the arithmetic and logical

operators are, how they are combined into expressions, what names are legal,

what words are reserved, how literal strings and numbers are expressed, how

programs are formatted, and so on.

Semantics is the meaning that is ascribed to legal syntax: what does a

legal construction mean or do. For the area computation program in Chapter

2, which is repeated here:

void main() {

float length, width, area;

scanf("%f %f", &length, &width);

area = length * width;

printf("area = %f\n", area);

}

the semantics say that when the function main is called, it will call the func-

tion scanf to read two data values from the standard input, compute the

area, and call printf to print area =, the area and a newline character

(\n).

A compiler is a program that translates something written in one language

into something semantically equivalent in another language. For example,

compilers for high-level languages like C and Fortran might translate into

assembly language for a particular kind of computer; some compilers trans-

late from other languages, such as Ratfor into Fortran.
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The first part of the compilation process is to parse the program, that is, to

determine its syntactic structure by recognizing names, constants, function

definitions, control flow, expressions, and the like, so that subsequent pro-

cessing can attach suitable semantics.

Today, writing a parser for a programming language is well-understood

technology, but in the early 1970s it was an active research area, focused on

creating programs that would convert the grammar rules of a language into

an efficient parser for programs written in that language. Such parser-genera-

tor programs were also known as “compiler-compilers,” since they made it

possible to generate the parser for a compiler mechanically. Typically they

created a parser and also provided a way to execute code when particular

grammar constructs were encountered during parsing.

Yacc

In 1973, Steve Johnson (Figure 5.1), with language-theory help from Al

Aho, created a compiler-compiler that he called YACC (henceforth Yacc). A

comment from Jeff Ullman inspired the name, which stands for “yet another

compiler-compiler,” suggesting that it was not the first such program.

Figure 5.1: Steve Johnson, ∼1981 (Courtesy of Gerard Holzmann)
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A Yacc program consists of grammar rules for the syntax of a language,

and semantic actions attached to the rules so that when a particular grammat-

ical construction is detected during parsing, the corresponding semantic

action can be performed. For example, in pseudo-Yacc, part of the syntax of

arithmetic expressions might be:

expression := expression + expression

expression := expression * expression

and the corresponding semantic actions might be to generate code that would

add or multiply the results of the two expressions together and make that the

result. Yacc converts this specification into a C program that parses input and

performs the semantic actions as the input is being parsed.

Normally a compiler writer would have to write more complicated rules

to handle the fact that multiplication has higher precedence than addition

(that is, multiplications are done before additions), but in Yacc, operator

precedence and associativity can be specified by separate declarations rather

than additional grammar rules, which is a huge simplification for non-expert

users.

Steve himself used Yacc to create a new “portable C compiler” (PCC) that

had a common front end for parsing the language and separate back ends for

generating code for different computer architectures. Steve and Dennis also

used PCC in their implementation of Unix for the Interdata 8/32, as described

in Section 6.5.

PCC had other uses as well. As Steve recalls,

“An unexpected spin-off from PCC was a program called Lint. It

would read your program and comment on things that were not porta-

ble, or just plain wrong, like calling a function with the wrong number

of arguments, inconsistent sizes between definition and use, and so on.

Since the C compiler only looked at one file at a time, Lint quickly

became a useful tool when writing multi-file programs. It was also

useful in enforcing standards when we made V7 portable, things like

looking for system calls whose error return was −1 (Version 6) instead

of null (V7). Many of the checks, even the portability checks, were

ev entually moved into the C language itself; Lint was a useful test-

bench for new features.”

The name Lint comes from the image of picking lint off clothing. Although

its functionality is now often subsumed into C compilers, the idea is common

in analogous tools for a number of other languages.
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Yacc was instrumental in several of the languages that were developed in

1127 over the years, some of which are described in the next few sections.

Lorinda Cherry and I used it for the mathematical typesetting language Eqn.

I also used Yacc for the document preparation preprocessors Pic and Grap

(the latter with Jon Bentley, Figure 5.2), for the AMPL modeling language,

for at least one version of Ratfor, and for other one-off languages over the

years. Yacc was also used for the first Fortran 77 compiler f77, Bjarne

Stroustrup’s C++ preprocessor cfront, the Awk scripting language (to be

described shortly), and a variety of others.

Figure 5.2: Jon Bentley, ∼1981 (Courtesy of Gerard Holzmann)

Yacc’s combination of advanced parsing technology, high efficiency and

convenient user interface helped it to become the sole survivor among the

early parser generators. Today it lives on under its own name, in independent

implementations like Bison that are derived from it, and in reimplementations

in half a dozen other languages.

Lex

In 1975, Michael Lesk (Figure 5.3) created a lexical analyzer generator

called Lex, which is a direct parallel to Yacc. A Lex program consists of a

sequence of patterns (regular expressions) that define the “lexical tokens”

that are to be identified; for a programming language, these would be compo-

nents like reserved words, variable names, operators, punctuation, and so on.

As with Yacc, a semantic action written in C can be attached to each
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Figure 5.3: Michael Lesk, ∼1981 (Courtesy of Gerard Holzmann)

specified token. From these, Lex generates a C program that will read a

stream of characters, identify the tokens it finds, and perform the associated

semantic actions.

Mike wrote the first version of Lex but it was quickly revised in the sum-

mer of 1976 by an intern who had just graduated from Princeton. Mike

recalls:

“Lex was rewritten almost immediately by Eric Schmidt as a summer

student. I had written it with a non-deterministic analyzer that

couldn’t handle rules with more than 16 states. Al Aho was frustrated

and got me a summer student to fix it. He just happened to be

unusual.”

Eric went on to a PhD at Berkeley, and was the CEO of Google from 2001 to

2011.

Yacc and Lex work well together. Each time Yacc needs the next token

while parsing, it calls on Lex, which reads enough input to identify a com-

plete token and passes that back to Yacc. The Yacc/Lex combination mecha-

nizes the front-end components of a compiler while taking care of compli-

cated grammatical and lexical constructs. For example, some programming

languages have operators that are two or three characters long, like the ++

operator in C. When the lexical analyzer sees a +, it has to look ahead to

know whether the operator is ++ or an ordinary + followed by something

else. It’s not too hard to write this kind of code by hand, but it’s a lot easier
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to have it written for you. In Lex, one would only have to say

"++" { return PLUSPLUS; }

"+" { return PLUS; }

to distinguish the two cases. (PLUS and PLUSPLUS are names for numeric

codes that are easy for the C code to deal with.)

Figure 5.4 shows how Yacc and Lex are used in the creation of a C pro-

gram that is a compiler for some language. Yacc generates a C file for the

parser and Lex generates a C file for the lexical analyzer. These two C files

are combined with other C files that contain semantics, and compiled by a C

compiler to make an executable program. This figure was created with Pic,

which has exactly this structure.

C compiler

Yacc Lex
other

C code

grammar rules lexical rules

generated parser
generated

lexer

executable program

(a compiler)

Figure 5.4: Using Yacc and Lex to create a compiler

In spite of how easy and powerful Lex is, over the long haul, it has not

been as extensively used as Yacc has. Perhaps this is because writing a

parser for a complex language can be daunting for a comparatively inexperi-

enced programmer, while writing a lexical analyzer is not. But writing a lex-

ical analyzer by hand, however easy and straightforward it might seem, is not

necessarily a good idea.

My experience with the Awk scripting language (discussed later in this

chapter) may be instructive. The first implementation of Awk used Yacc for

the grammar and Lex to tokenize the input program. When we tried to port

Awk to non-Unix environments, however, Lex was not available or it worked
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differently. After a few years, I reluctantly rewrote the lexical part of Awk in

C, so it would be portable to all environments. But for years afterwards, that

hand-crafted lexical code was a fruitful source of bugs and subtle problems

that were not present in the Lex-generated version.

This is a good example of a general rule: if a program writes your code

for you, the code will be more correct and reliable than if you write it your-

self by hand. If the generator is improved, for example to produce better

code, everyone benefits; by contrast, improvements to one hand-written pro-

gram do not improve others. Tools like Yacc and Lex are excellent examples

of this rule, and Unix provides many others as well. It’s always worth trying

to write programs that write programs. As Doug McIlroy says, “Anything

you have to do repeatedly may be ripe for automation.”

Make

Most large programs consist of multiple source files, which have to be

compiled and linked together to create an executable program. This can

often be done with a single command such as cc *.c to compile all the

source files for a C program, but in the 1970s computers were so slow that

recompiling a multi-file program after making a change in a single file could

take significant time, minutes instead of seconds. It was more efficient to

recompile only the changed file and link the result with the other previously

compiled files.

Remembering which files had been compiled recently enough and which

needed to be recompiled was a nuisance, however, and it was easy to make

mistakes. Steve Johnson complained about this to Stu Feldman (Figure 5.5)

one day, after spending hours of fruitless debugging, only to realize that he

had simply failed to recompile one of the files he had changed.

Coincidentally, Stu had done exactly the same thing and had also strug-

gled to debug a program that was really correct, just not recompiled. He

came up with a elegant idea, a specification language that describes how the

pieces of a program depend on each other. A program that he called Make

analyzed the specification and used the times that files had been changed to

do the minimum amount of recompilation necessary to bring everything up to

date. The first implementation was in 1976:

“I wrote Make over the weekend, and then rewrote it the next weekend

with macros (the list of built-in code was getting too long). I didn’t fix

the tab-in-column-1 because I quickly had a devoted user base of more

than a dozen people and didn’t want to upset them.”
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Figure 5.5: Stu Feldman, ∼1981 (Courtesy of Gerard Holzmann)

Make was an instant success, since it obviated a whole class of silly errors

while making compilation as efficient as possible. It was also a boon for pro-

grams that involved more complicated processing than just C compilation,

for example programs that used Yacc and Lex, each of which had to be run

first to create C files that were then compiled, as in Figure 5.4 above. One

makefile could capture all the processing steps necessary to compile a new

version of a program, and could also describe how to do related tasks like

running Lint, making a backup and printing documentation. A makefile had

some of the same properties as a shell script, but the language was declara-

tive: a  specification of dependencies and how to update components but with-

out explicit tests of file creation times.

The “tab-in-column-1” problem that Stu refers to is an unconventional

and somewhat awkward restriction on the format of makefiles. It’s arguably

a design flaw. It’s also a nice example of a general problem that any success-

ful program faces: if the program is good, it attracts users, and then it

becomes hard to change the program in any incompatible way. Unix and

most other systems are replete with examples of initial blemishes that are

now too entrenched to fix.

Make is also a good example of a theme in this section: rather than writ-

ing code or doing sequences of operations by hand, create a notation or
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specification that declares what has to be done, and write a program to inter-

pret the specification. This approach replaces code with data, and that’s

almost always a win.

Yacc, Lex and Make are very much with us today, because they address

important problems that programmers still face, and they solve those prob-

lems well enough that the designs and sometimes even the original imple-

mentations are still in use.

As a digression, I first met Stu in about 1967 when I was a grad student at

Princeton and he was an undergrad; he was working part-time on Multics for

Bell Labs during the school year. He joined 1127 after getting his PhD in

astrophysics at MIT. He went to Bellcore in 1984, then to IBM, then to

Google, where in a bit of good fortune for me, he was my manager several

levels up when I visited there for summers.

5.3 Document preparation

Unix had good tools for document production from very early on, and this

helped to make its documentation good. This section tells an extended story

about the history of document preparation tools on early Unix systems. Like

so much of Unix, it’s a story of how the interactions among programs, pro-

grammers and users formed a virtuous cycle of innovations and

improvements.

When I was an intern at MIT in 1966, I encountered Jerry Saltzer’s

Runoff program. (The name comes from expressions like “I’ll run off a copy

for you.”) Runoff was a simple text formatter: its input consisted of ordinary

text interspersed with lines beginning with a period that specified formatting.

For example, a document might say

.ll 60

.ce

Document preparation

.sp 2

.ti 5

Unix had good tools for document production ...

.sp

.ti 5

When I was an intern at MIT in 1966 ...

This “markup” told Runoff how to format the text: set the line length to

60 characters, center the next line, space down two lines, temporarily indent

5 spaces, print the paragraph in lines of at most 60 characters, then space

down one line and temporarily indent again for the next paragraph.
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Runoff had a dozen or two commands like this that made it easy to format

simple documents—manual pages, program descriptions, letters to friends—

any text formatting that one might do today with a tool like Markdown.

Early formatters

Runoff was a revelation to me, a way to use computers that had nothing to

do with mathematical computations or compiling. It became easy to refine

one’s writing over and over again at little cost. It may be hard for readers

today to appreciate just how labor-intensive it was to prepare documents

before the creation of word processing programs, when there were only

mechanical typewriters—better than clay tablets or quill pens, to be sure, but

any change of more than a few words in a document would require a com-

plete retype. Thus most documents went through only one or two revisions,

with handwritten changes on a manuscript that had to be laboriously retyped

to make a clean copy.

When I started to write my thesis in the fall of 1968, I really wanted

Runoff, since the alternative would have been to type the thesis myself on a

manual typewriter (and retype it for each set of changes), or pay someone to

do it for me. I’m a fast but inaccurate typist, so the former was not practical,

and since I was both cheap and poor, the latter wasn’t either.

Thus I wrote a simple version of Runoff that I called “Roff,” for “an

abbreviated form of Runoff.” The problem was that there was no interactive

computer system like CTSS at Princeton; there weren’t any computer termi-

nals either. All that was available was punch cards, which only supported

upper case letters. I wrote Roff in Fortran (far from ideal, since Fortran was

meant for scientific computation, not pushing characters around, but there

were no other options) and I added a feature to convert everything to lower

case while automatically capitalizing the first letter of each sentence. The

resulting text, now upper and lower case, was printed on an IBM 1403 printer

that could print both cases. Talk about bleeding edge! My thesis was three

boxes of cards. Each box held 2,000 cards, was about 14 inches (35 cm) long

and weighed 10 pounds (4.5 kg). The first 1,000 cards were the program and

the other 5,000 were the thesis itself in Roff.

Readers who have nev er worked with cards may find this confusing. Each

card contained at most 80 characters, either one line of Fortran code or one

line of thesis text. If some part of the text needed to be changed, the replace-

ment text was punched onto a few new cards that replaced the old cards,

which were discarded. Fixing a spelling mistake would generally require

replacing only one card, though if the new text were much longer, more cards

might be needed.
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Figure 5.6: A page of my thesis, formatted with Roff

I had to manually insert a few special characters like summation signs (Σ)

into the printed pages but this kludgy mechanism worked surprisingly well,

certainly enough for me to print my thesis, which I believe was the first com-

puter-printed thesis at Princeton. (Figure 5.6 shows a random page.) For

some years afterwards, there was a student agency that would “roff” docu-

ments for students for a modest fee. Roff was thus the first program I ever
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wrote that was used by other people in any significant way.

When I got to Bell Labs, I found that there were a couple of other roff-

like programs also underway, including one by Doug McIlroy that was based

on Saltzer’s original. And Joe Ossanna shortly thereafter wrote a much more

powerful version that he called Nroff, for “new Roff,” which made it possible

for the patent department to format patent applications. As I described ear-

lier, Nroff was the critical tool that enabled the purchase of the first PDP-11

computers for Unix.

This little pocket of document preparation enthusiasts, and a community

of active users of such programs, fit my interests perfectly, and I spent a sig-

nificant part of the next ten years happily working on tools for text format-

ting.

Tr off and typesetters

Roff and Nroff only handled fixed-width (“monospace”) character sets,

not much more than the standard alphabetic characters found on the Model

37 Teletype, so the output quality wasn’t very high. In 1973, however, Joe

Ossanna arranged to buy a phototypesetter, a Graphic Systems CAT, which

was popular in the newspaper industry. Joe’s intent was to produce better-

looking internal technical documents and also to help the patent department

to prepare better patent applications.

The CAT could print conventional proportionally spaced fonts in roman,

italic and bold, along with a set of Greek letters and special characters for

mathematics. It printed on long rolls of photographic paper that had to be

developed in a couple of baths of noxious and messy chemicals. This tech-

nology predates laser printers, which did not become widely available for at

least another 10 years. Furthermore, the output was black and white; inex-

pensive color printing did not arrive until several decades later.

Each font was a piece of 35mm film with character images, mounted on a

rapidly spinning wheel. The wheel held four fonts of 102 characters each, so

the total repertoire for a single job was 408 characters. The typesetter flashed

an intense light through the film strip image onto photographic paper when

the paper and the desired character were in the right positions. It was capable

of 16 distinct sizes.

The typesetter was slow—changing sizes required it to rotate a mechani-

cal lens turret—and the photographic chemicals were most unpleasant, but

the output quality was high enough that we could produce professional-look-

ing documents. Indeed, there were occasions when a paper submitted to a

journal by a Bell Labs author was questioned: it looked so polished that it
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must have already been published.

To drive the typesetter, Joe created a significant extension of Nroff that he

called Troff. “T” is for typesetter; it’s pronounced tee-roff. The Troff lan-

guage was arcane and tricky, but with sufficient skill and patience, it could be

made to do any formatting task, though few people ever mastered it. In

effect, Troff was an assembly language for a truly weird computer, so most

people used it through packages of macros that encapsulated common for-

matting operations like titles, headings, paragraphs, numbered lists, and so

on. The macros provided a higher-level language above the low-level Troff

commands. Mike Lesk, who created the widely used ms package, was the

master of creating macro packages; no one else in my orbit came close to his

skill in using the programming capabilities of Troff.

Once we had a typesetter that could produce output in a variety of fonts

with proportional spacing and enough special characters, it became possible

to think about typesetting books as well as internal technical documents. The

first book produced in that way was The Elements of Programming Style,

which Bill Plauger and I wrote in 1974. It was typographically rough in

many places because we did not have a monospace font for displaying pro-

grams, but it was otherwise satisfactory.

One of the main motivations that Bill and I had for doing our own typeset-

ting was to avoid the errors that the conventional publishing process fre-

quently introduced into printed computer programs. Because we had total

control over our content, from input to final pages ready to be printed, we

could test the programs directly from the text, which would never be touched

by copy-editor or compositor hands. The result was an essentially error-free

programming book, which was most unusual at the time. I’ve used that same

process ever since; the books listed at the front of this one have all been pro-

duced with Troff or its modern incarnation, Groff. Fortunately, one no longer

needs typesetters and their expensive and unpleasant media. Today it’s suffi-

cient to get everything right in a PDF file and send that to a publisher or

printer.

Eqn and other preprocessors

Bell Labs authors wanted to create documents that contained more than

just text, most obviously mathematics, but also tables, figures, bibliographic

citations, and so on. Troff itself was capable in principle of handling such

things, but not in any remotely convenient way. Thus we began to create spe-

cial-purpose languages that made it easier to handle specific types of techni-

cal material. In effect, we were repeating for document preparation the kind

of evolution that had already happened for conventional programming



CHAPTER 5: SEVENTH EDITION 103

languages.

The first of these special-purpose languages was Eqn, a language and pro-

gram for typesetting mathematical expressions that Lorinda Cherry (Figure

5.7) and I wrote in 1974. As might be expected of a scientific research lab,

Bell Labs produced a great number of technical documents, mostly for inter-

nal consumption, and many of those were full of mathematics. The Labs had

a cadre of talented typists who could read hand-written mathematics and type

it into recognizable form using manual typewriters, but this process was

time-consuming and edits were painful.

Figure 5.7: Lorinda Cherry, ∼1981 (Courtesy of Gerard Holzmann)

Lorinda had been exploring the idea of a tool for printing mathematics,

and I wanted a language that would match the way that mathematics is spo-

ken aloud by mathematicians. I think that this language idea was in my sub-

conscious, because while I was a graduate student, I had volunteered for sev-

eral years to read technical books aloud so they could be recorded onto audio

tapes at Recording for the Blind, and so I had spent many hours speaking

mathematics.

Eqn did a decent job on simple mathematical expressions. For example,

the summation

∞

i=0
Σ

1

2i
= 2
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is written as

sum from i=0 to inf 1 over 2 sup i = 2

Eqn proved to be easy to teach to the mathematical typists and then to

others, and experiments verified that it was much faster than manual type-

writers. The language was simple enough that PhD physicists could also

learn it, and after a while, people started doing their own typing rather than

relying on expert typists. Eqn was one of the inspirations for math mode in

Don Knuth’s TeX (1978), which is now the standard for mathematical typog-

raphy.

Eqn was implemented as a preprocessor for Troff; the normal usage was

to pipe the output of Eqn into Troff like this:

eqn file | troff >typeset.output

Eqn recognized mathematical constructs and translated those into Troff com-

mands, while passing everything else through untouched. The preprocessor

approach provided a clean separation into two languages and two programs

with different concerns. Lorinda and I had been forced into a good idea by

the physical limitations of the PDP-11. There simply wasn’t enough memory

to include mathematical processing in Troff, which was already about as big

as a program could be, and in any case, Joe Ossanna would not have encour-

aged us to modify Troff even if we had wanted to.

The Eqn language is based on a box model: an expression is built up as a

sequence of boxes positioned and sized relative to each other. For example, a

fraction is a numerator box centered over a denominator box, with a long-

enough line between them. A subscripted expression like xi is a pair of

boxes where the contents of the second box are in a smaller size and posi-

tioned somewhat down from the first box.

We used Steve Johnson’s newly invented Yacc compiler-compiler to

define the grammar and hang semantics on it. Eqn was the first Yacc-based

language that wasn’t a traditional compiler for a traditional language. Speak-

ing for myself, Eqn would not have happened without Yacc, since I was not

up to writing a parser by hand for a new language. The grammar was too

complicated to write an ad hoc parser for, and it changed frequently while

Lorinda and I were experimenting with syntax. Our experience with Yacc is

a compelling example of how having good tools makes it possible to do

things that would otherwise be too hard or not even conceivable.

Preprocessors for different kinds of typographically difficult material

turned out to be a good idea. Soon after Eqn, Mike Lesk created Tbl, which

provided a very different language for specifying complex tables, and Refer
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for managing bibliographic citations, which were important for technical

papers.

Many of the programs described in this chapter are preprocessors, that is,

programs that convert some language into a suitable form for a subsequent

process. Cfront, the original version of C++, would be more accurately

described as an object-oriented preprocessor for C that evolved into C++.

Sometimes, as with C++, the preprocessor eventually went away as function-

ality was absorbed into the downstream process. Most other times, however,

the programs stayed separate, as with the document preparation tools like

Eqn and Tbl. Another example is bc, a preprocessor for dc, Bob Morris’s

original unlimited-precision calculator. Lorinda Cherry wrote bc to provide

conventional infix arithmetic notation for dc, whose postfix notation was

hard for novices to use casually.

Preprocessors have many advantages. First, if one implements a lan-

guage, it is not limited by existing syntax but can use a completely different

style, as with the various Troff preprocessors. Second, when memories were

small, it was simply not possible to include more functionality in already-

large programs; this was especially the case with Troff. Finally, because the

output of a preprocessor is available, it can be manipulated before being

passed on, to handle other kinds of processing. In the document preparation

suite, I’ve often used Sed scripts and the like to fix character sets and spacing.

Chris Van Wyk and I wrote programs to do vertical justification of pages, by

modifying the output of Troff before it went to a device driver. These would

not have been possible if the functionality were embedded in a single pro-

gram, but when the process is a pipeline, it’s easy to add new stages at the

front or back or middle.

Device-independent Troff

Joe Ossanna died in 1977 at the age of 48. Part of his legacy was the

source code for Troff, which at the time was nearly 10,000 lines of

inscrutable C that Joe had hand-transliterated from its original assembly lan-

guage form—no comments, dozens of global variables with 2-letter names,

and (see the discussion of memory above) a variety of subtle tricks for cram-

ming as much information as possible into not enough memory. In Joe’s

defense, this was absolutely necessary to pack all of Troff’s functionality into

65K bytes, the maximum memory that was available to user programs on the

PDP-11/45 that we were using at the time.

I did nothing with the code for at least a year, but finally got up enough

courage to start fiddling with it. Slowly and cautiously, I beg an an upgrade.

The biggest single problem, aside from the fact that there were no comments
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or documentation beyond the user manual, was that it was strongly dependent

on the original Graphic Systems CAT typesetter, which by this time was

obsolete.

Eventually I managed to find all the places where the code relied on pecu-

liarities of the CAT and replaced them with generic code driven by tables of

typesetter characteristics like character sets, sizes, fonts, and resolutions. I

invented a typesetter description language so that Troff could produce output

that was tuned to the capabilities of a specific typesetter. Straightforward

drivers converted that output into whatever input was needed for specific

devices. This resulted in the so-called device-independent version called

Ditroff. It also enabled other document preparation preprocessors, especially

Pic, which was able to take advantage of the higher resolution of new type-

setting devices to draw lines and figures.

One of those devices was a new typesetter from Mergenthaler called the

Linotron 202. On paper, this device seemed like just what we needed to

replace the CAT. It was fast, it had high resolution, it drew characters by

painting them on a screen, its processor was a standard minicomputer (a

Computer Automation Naked Mini), and it was controlled by a simple pro-

gram similar to the ones that I had written for other typesetters. The main

drawback was the cost, $50,000 in 1979, but we had done enough good work

with the previous typesetter that management approved the purchase with

hardly any discussion.

Once the 202 arrived, we discovered that its hardware was impossibly

flaky; the only thing worse was its software. This started several months of

almost daily visits from Mergenthaler’s repair service, and a remarkable feat

of reverse engineering of the hardware by Ken Thompson and Joe Condon

(Figure 5.8).

Joe was a physicist by training, but as his interests shifted, he became an

exceptional designer of electronic circuits. He wrote many of the circuit

design tools that the Center used for its hardware experiments, and with Ken

was the designer of the Belle chess machine. His hardware expertise was

crucial to figuring out the 202.

Ken beg an by writing a disassembler for the binary programs that ran on

the machine. (For the record, he did this in a couple of hours one evening,

while I went home for dinner and then came back for an evening of work.)

Disassembling Mergenthaler’s programs gav e Ken and Joe a toehold into

how the typesetter itself worked, and after several weeks of intense reverse

engineering they figured out Mergenthaler’s proprietary encoding of charac-

ters and wrote code so we could create our own characters, like the then-cur-

rent Bell System symbol at the top of Figure 5.9, a chess font for printing
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Figure 5.8: Joe Condon, ∼1981 (Courtesy of Gerard Holzmann)

games and board diagrams, and a Peter face that had a variety of uses (for

example, Figure 5.10).

Ken wrote a B interpreter for the Mergenthaler controller, and we wrote B

programs to drive it. This story is told in detail in a technical memo that Bell

Labs management suppressed at the time, probably to avoid revealing any of

Mergenthaler’s intellectual property, but which was finally published in 2013

(see www.cs.princeton.edu/˜bwk/202). Figure 5.9 shows part of the first

page; the incomplete internal memorandum numbers like 80-1271-x indicate

that an official number was never assigned.

When it eventually began to work, the high resolution of the 202 made it

possible to achieve interesting graphical effects, including half-tone images

and line drawings like the diagram of a digital typesetter in Figure 5.9. For

the latter, I created a language called Pic in which figures like org anization

charts or network packet diagrams could be described textually. Naturally it

used Yacc for the grammar and Lex for the lexical part. Figure 5.11 shows a

simple example of Pic input and output.

Book publication

One reason why the document preparation tools worked well is that they

were used for everything—manuals, technical papers, books. If a program

had bugs or didn’t work well, the authors of the code were in the same
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Figure 5.9: Unpublished Bell Labs memo on doing battle with the Linotron 202

hallway, and there was strong pressure to fix things and to add features when

necessary. This applied more broadly than just document preparation soft-

ware, of course—we were all users of our own software, and that gav e us a

real incentive to improve it.
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Figure 5.10: Peter face eye-chart (Courtesy of Gerard Holzmann)
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arrow "stdin" above

box "command"

arrow "stdout" above

arrow down from last box.s " stderr" ljust

stdin
command

stdout

stderr

Figure 5.11: The Pic drawing language (input and output)

Members of the Computing Science Research Center wrote an unusually

large number of influential books during the 1970s and 1980s, well beyond

what one might expect from an industrial research lab. As a result, after a

while, Bell Labs became known as a source of authoritative books about

computing and computer science.

Al Aho wrote several widely used textbooks, including the famous 1977

“Dragon book” (Principles of Compiler Design, Figure 5.12) with Jeff Ull-

man, and Design and Analysis of Computer Algorithms with Jeff and John

Hopcroft. Bjarne Stroustrup (Figure 5.13) created C++ in the early 1980s

and wrote several C++ books a few years later. Jon Bentley’s Programming

Pearls books grew out of his columns for Communications of the ACM.

Mike Garey and David Johnson of the math center used Troff and Eqn for

their core book Computers and Intractability: A Guide to the Theory of NP-

Completeness. We also published book-form manuals for Unix, Plan 9, and

so on. These publications became standard texts and references for a genera-

tion of programmers and computer science students.

How did this relatively small group of researchers from industry manage

to produce so many influential books?

I can see several reasons. First and foremost, people took writing seri-

ously, they took pains with their own writing, and they were great critical

readers of what other people wrote. Doug McIlroy was first among this

group; no one else matched Doug’s ability to spot errors (from tiny to cru-

cial) no matter what the topic, nor had his eye for murky prose. I don’t think

that I ever wrote anything at Bell Labs that I did not ask Doug to comment

on, and he always did. It was humbling when he shredded my words but it

made me into a much better writer, and that happened to others as well.
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Figure 5.12: Aho and Ullman Dragon book, first edition, 1977

Of course Doug wasn’t the only critical reader. Everyone gav e gener-

ously of their time; it was simply part of the culture that you provided

detailed comments on what your colleagues wrote. This was unusual, and

was one of the things that made the Labs a great place to be.

Second, local management was supportive of book writing. Publication

was important for maintaining Bell Labs’ reputation in the scientific and aca-

demic communities, and that included books. With managerial support, it

was possible to devote full time to a book for six months, and that concen-

trated effort was enough to basically finish a job that might take sev eral years

if it were done as a part-time or evening activity. And it gets better: although

Bell Labs retained the copyrights on books, the authors got to keep the royal-

ties. I doubt that any of us ever wrote a book explicitly to make money—no

one at the Labs would be dumb enough to think that writing a technical book

was lucrative—but if a book had some success, the authors kept the money.

That enlightened management and company policy encouraged people to

write, and in the long run it paid off for the company as well as for the

authors. Publications by Bell Labs authors were important for recruiting.
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Figure 5.13: Bjarne Stroustrup, ∼1984 (Courtesy of Bjarne Stroustrup)

Bell Labs wasn’t some mysterious secret operation; students knew it as the

place where their software was created and their textbooks were written.

Potential new hires could see that good work was being done and it was pub-

lished; they didn’t hav e to worry about disappearing into an “industrial”

research lab. That put Bell Labs recruiting on an equal footing with universi-

ties, with the added advantage that people could do research full time at the

Labs, without the distractions of teaching, administration and raising money.

This combination of great software and influential books was a big part of

what made the Labs so successful at the time.

A third factor is more technical: the symbiosis among C and Unix as a

programming environment, document preparation as a research area, and

writing about technical computer topics as a major activity. This began with

text formatting programs like Doug McIlroy’s Roff, Joe Ossanna’s Nroff and

Troff, and then the preprocessors like Eqn, Tbl, and so on. Those tools made

it easier to produce documents that included ever more typographically chal-

lenging content, like mathematics, tables, figures, diagrams, and graphs.

That in turn led to better writing, because all of these document preparation

programs shared a vital characteristic: they made it easy to make multiple

revisions of documents and always have a clean copy to work from, as

opposed to the slow and painful alternative of giving material to a typist and

waiting days for it to come back.
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It may sound trivial, but I’m sure that the ability to make revisions so eas-

ily led to better writing, because it pretty much eliminated the overhead of

making an up to date copy, and it completely eliminated middlemen like typ-

ists, editors and printers. Accuracy mattered for technical papers and for the

Unix Programmer’s Manual, but control of the whole process especially mat-

tered for books. For programming books, it was vital that the programs were

typeset directly from the source code, so we could be sure that what was

printed was correct, that it hadn’t been inadvertently changed by human

intervention.

These tools were all written in C, of course, since it was expressive and

efficient. It’s hard to remember today, perhaps, that efficiency in both time

and space were crucial when machine capacities were expressed in kilobytes,

not gigabytes. Every byte counted, and so at some level did every instruc-

tion, so a language that economized on both was not just nice, but a practical

necessity.

All of this has come full circle—this book was produced by the descen-

dants of these document preparation programs, though with the excellent

fresh implementations and enhancements in Groff, Geqn, and so on, written

by James Clark.

5.4 Sed and Awk

One of the major simplifications of the Unix file system was its uniform

treatment of files as sequences of uninterpreted bytes. There were no

records, no required or prohibited characters, and no internal structure

imposed by the file system—just bytes.

There was a similar simplification in the way that most Unix programs

handled textual data. Te xt files were just sequences of bytes that happened to

be characters in ASCII, the American Standard Code for Information Inter-

change. This uniform view of plain text was a natural fit for pipelines, and

the Unix toolkit was full of programs that read text input, did something with

or to it, and wrote text output. I’ve already mentioned examples like word

counting, comparison, sorting, transliteration, finding duplicates and of

course the quintessential example, grep for searching.

Sed

The success of grep inspired Lee McMahon to write an analog called

gres that did simple substitutions on text as it flowed through; “s” was the

substitute command in ed. Lee soon replaced it by a generalization, a stream



114 CHAPTER 5: SEVENTH EDITION

editor called Sed that applied a sequence of editing commands to text on its

way from input to output; grep and gres were both special cases of Sed. The

commands that Sed uses are the same as the editing commands in the stan-

dard ed text editor. Sed is frequently used today in shell scripts, for trans-

forming a stream of data in some way: replacing characters, or adding or

removing unwanted spaces, or discarding something unwanted.

Lee had an unusual background—a PhD in psychology from Harvard, and

time in a Jesuit seminary preparing for the priesthood before switching to a

more conventional path as a computer scientist. He was one of the first in the

Unix group to think about processing text at scale, at a time when primary

memories were too small to store large amounts of text. I might add that

“large” is relative. Lee’s particular interest in the early 1970s was the Feder-

alist Papers, which altogether are only a little over a meg abyte.

Awk

I was interested in tools that could process both numbers and text equally

well. Neither grep or Sed could handle numeric data or do arithmetic, and

grep couldn’t deal with multiple text lines; such computations still required a

C program. So I was looking for some kind of generalization. At the same

time, Al Aho (Figure 5.14) had been experimenting with a richer class of reg-

ular expressions than grep supported, and had written egrep (“extended

grep”). Finally, Peter Weinberger, who not long afterwards transferred into

1127 and moved into the office between Al and me, was interested in data-

bases.

In the fall of 1977, the three of us talked about how to combine these

ideas, taking some inspiration from RPG, IBM’s powerful but inscrutable

report program generator, along with a neat idea from Marc Rochkind that’s

described in the next chapter. Ultimately we designed a language that we

called AWK (Awk from now on). As we said in the original description,

naming a language after its authors shows a certain paucity of imagination. I

don’t recall now whether we thought about cognates related to “awkward,” or

perhaps we found the name apt in a sardonic way, but in any case it stuck.

Peter wrote the first version very quickly, in just a few days, using Yacc, Lex

and Al’s egrep regular expression code.

An Awk program is a sequence of patterns and actions. Each line of input

is tested against each pattern, and if the pattern matches, the corresponding

action is performed. Patterns can be regular expressions or numeric or string

relations. Actions are written in a dialect of C. An omitted pattern matches

all lines; an omitted action prints the matching line.
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Figure 5.14: Al Aho, ∼1981 (Courtesy of Gerard Holzmann)

This example prints all input lines that are longer than 80 characters; it’s a

pattern with no action.

awk ’length > 80’

Awk supports variables that hold numbers or strings, and associative

arrays whose subscripts can be numbers or arbitrary strings of characters.

Variables are initialized to zero and an empty string, so there is usually no

need to set initial values.

Awk automatically reads each line of each input file and splits each input

line into fields, so one rarely needs code to explicitly read input or parse indi-

vidual lines. There are also built-in variables that contain the number of the

current input line and the number of fields on it, so those values do not have

to be computed either. Such defaults eliminate boilerplate code and mean

that many Awk programs are only a line or two long.

To illustrate, this program prefixes each line by its line number:

awk ’{print NR, $0}’

NR is the number of the current input line, and $0 is the input line itself.

The following canonical example counts the number of occurrences of

each word in its input, and prints the words and their counts at the end:
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{ for (i = 1; i <= NF; i++) wd[$i]++ }

END { for (w in wd) print w, wd[w] }

The first line is an action with no pattern, so it is evaluated for each input

line. The built-in variable NF is the number of fields on the current input

line; this is computed automatically. The variable $i is the i-th field, again

computed automatically. The statement wd[$i]++ uses that value, which is

a word of the input, as a subscript in the array wd and increments that ele-

ment of the array. The special pattern END matches after the last input line

has been read. Note the two different kinds of for loop. The first is bor-

rowed straight from C. The second loops over the elements of an array, so in

this example, it prints a line for each distinct word of the original input, along

with the count of how many times that word occurred.

Although Perl and later Python took over many potential applications,

Awk is still widely used today; it’s a core tool and there are at least four or

five independent implementations, including Arnold Robbins’s Gawk and

Michael Brennan’s Mawk. Awk certainly has some questionable design deci-

sions and dark corners, but I think it gives the most bang for the program-

ming buck of any language—one can learn much of it in 5 or 10 minutes, and

typical programs are only a few lines long. It doesn’t scale well to big pro-

grams, though that hasn’t stopped people from writing Awk programs that

are thousands of lines long.

Sed is popular as well, a frequent component of shell pipelines. I even

have a bumper sticker that says

“Sed and Awk: together we can change everything.”

It’s worth noting that Sed, Awk, Make, Yacc and Lex all implement some

flavor of the pattern-action paradigm. Programs in these languages consist

of a sequence of patterns and actions; the basic operation is to check the

input against each pattern and when a pattern is matched, perform the corre-

sponding action. Patterns and actions may sometimes be omitted, in which

case a default behavior takes place.

For example, grep, Sed and Awk can all be used to match a single regular

expression. The following three commands are equivalent if the specific reg-

ular expression is valid for each:

grep re

sed -n /re/p

awk /re/

The pattern-action paradigm is a natural way to think about computations

that are primarily a sequence of tests and actions.
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Figure 5.15: Awk in popular culture

5.5 Other languages

The Unix programming environment, its language-development tools, a

rich set of potential application domains, and of course local experts in every-

thing from compilers to language theory and algorithms, led to the design

and implementation of other languages as well. I’m not going to dive deeply

into any of these, but it’s worth a quick look at a partial list.

There’s no need to understand any of the details in these examples. The

real lesson is that wide-ranging interests, language expertise, and tools like
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Yacc and Lex made it possible for members of the Center to create new lan-

guages for new application areas relatively easily. This would have been

much harder without that combination of factors, and I think that many of

these interesting languages would not have existed otherwise.

The most significant example is C++, which started in 1979 when Bjarne

Stroustrup joined 1127, fresh from his PhD at Cambridge. Bjarne was inter-

ested in simulation and operating systems, but existing languages didn’t

really satisfy his needs. Accordingly, he took some of the good ideas from

the closest match, Simula, and merged them with C. The result, which com-

bined the ideas of object-oriented programming with the efficiency and

expressiveness of C, was called “C with classes,” and dates from 1980.

This proved to be a good combination, and the language prospered. In

1983, it acquired the name C++, Rick Mascitti’s pun on the C ++ increment

operator. Today C++ is one of the most widely used programming lan-

guages, at the heart of the implementation of Microsoft’s Office suite, big

parts of Google’s infrastructure, your favorite browser (whatever it is), many

video games, and much other behind-the-scenes software.

Bjarne was a member of my department for about 15 years, and as

described earlier, he used to drop in frequently to talk out design decisions,

so I got to see the evolution of C++ from the beginning. At least in the early

days I understood it, but it’s now a much bigger language and I’m barely lit-

erate in it.

C++ is often criticized for its size, and sometimes for some of the syntax

that it inherited from C. I know from years of conversations that there isn’t

anything in the language for which Bjarne didn’t hav e a good reason. It also

was a sound engineering and marketing decision to make C++ a superset of

C, even though that required including many of C’s syntactic and semantic

rough spots. If Bjarne had not aimed at C compatibility, C++ would have

had much less chance of success. It’s hard to establish a new language; mak-

ing it compatible at both source level (for cultural familiarity) and object

level (use of existing C libraries) was crucial, and at the time so was making

it as efficient as C.

A handful of significant other languages, not yet mentioned, also came

out of 1127.

Stu Feldman and Peter Weinberger wrote the first Fortran 77 compiler,

called f77. As a language, Fortran 77 was somewhat better than the Fortran

66 that I had papered over with Ratfor, though it still didn’t hav e a sensible

set of control-flow statements. In any case, f77 was challenging to build but

worthwhile, since it was heavily used by numerical analysts in 1127 on both
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the PDP-11 and the VAX.

In a related effort, Stu and Dave Gay wrote f2c, which translated Fortran

into C; f2c made it possible to use Fortran on systems where no compiler

was available, or where a Fortran compiler was an expensive commercial

product.

Gerard Holzmann (Figure 5.16), who joined 1127 from the University of

Technology in Delft, had always been interested in photography. In the early

1980s he conceived the idea of a programming language for making algorith-

mic transformations of digital image files. He called it Pico:

“Originally the name indicated its size, later it was more easily under-

stood as an abbreviation of ‘picture composition.’ ”

Pico is another example of a pattern-action language. It defines new

images by evaluating a user-defined expression once for every pixel in the

original image; expressions can refer to values, coordinates, various func-

tions, and parts of other images. Such expressions can lead to entertaining

transformations, many of which appeared in Beyond Photography, a book

that Gerard published in 1988 to describe and illustrate Pico. (Figure 5.17 is

an example.) Not surprisingly, Pico was implemented in C with a Yacc

parser.

Figure 5.16: Gerard Holzmann, ∼1981 (Courtesy of Gerard Holzmann)

Gerard also created another specialized language-based tool, Spin, for

analyzing and checking the correctness of software systems that involve
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Figure 5.17: Gerard Holzmann, transformed by Pico

separate communicating processes. Spin can be used to verify that a particu-

lar system is logically correct, free of defects like deadlock where no

progress can be made. (“After you.” “No, after you.”) Spin is an excellent

example of research in 1127 into how to represent the interactions between

separate processes over time, along with some first-rate software engineering

to make a system that’s easy to use and that runs fast enough to be useful.

Spin models are written in another special-purpose language called Promela

(protocol metalanguage), also implemented with Yacc.

Spin is thriving, with many thousands of installations and an annual con-

ference. It has been used to verify a large number of systems, ranging from

hardware designs to railway signaling protocols.

Bob Fourer, Dav e Gay and I designed and implemented AMPL, a lan-

guage for specifying optimization problems like linear programming. Bob

was a professor of management science and operations research at North-

western University, and had long been interested in helping people create

mathematical optimization models. Our work on AMPL began when he

spent a sabbatical at the Labs in 1984.

The AMPL language makes it easy to define models that describe particu-

lar optimization problems, like finding the best way to ship goods from facto-

ries to stores, given data for shipping costs, expected sales at each store, the

manufacturing capacity of each factory, and so on. Optimization problems

are written in an algebraic notation for systems of constraints that have to be

satisfied, and an objective function to be maximized or minimized.
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Optimization problems like these are at the heart of many industries: air-

line crew scheduling, manufacturing, shipping and distribution, inventory

control, advertising campaigns, and an enormous variety of other applica-

tions.

I wrote the initial AMPL implementation in C++, along with a Yacc

grammar and (I think) Lex for lexical analysis. It was my first serious C++

program, but I soon relinquished the code to Dave Gay.

AMPL is perhaps the only widely used language originating in 1127 that

is proprietary. (The language itself can’t be copyrighted, but there are at this

point no open-source implementations that I am aware of.) AT&T started

licensing AMPL to companies a few years after it was first created. When

Dave and I retired from Bell Labs, the three of us formed a small company,

AMPL Optimization, to continue AMPL development and marketing. Even-

tually we bought the rights from Bell Labs so we could go our own way. The

company remains small but is a significant player in its niche market.

In the early 1980s, Rob Pike (Figure 5.18) and Luca Cardelli experi-

mented with languages for concurrency, especially for interactions with input

devices like mice and keyboards; that led to the names Squeak and

Newsqueak. The ideas from Newsqueak eventually found their way into the

concurrent languages Limbo and Alef that were used in Plan 9, and a decade

later into the Go programming language, which was created at Google in

2008 by Rob Pike, Ken Thompson and Robert Griesemer.

5.6 Other contributions

Most of the emphasis so far has been on system software, especially lan-

guages, since that’s what I know best, but I should mention some significant

activities in scientific computing, communications, security and hardware,

since they were often influential, and of course they all had substantial soft-

ware components. These don’t all fall neatly into the 7th edition time frame.

Scientific computing

As might be expected for a scientific research operation, Bell Labs was

involved very early in the use of computers for modeling and simulation of

physical systems and processing, a natural extension of mathematical

research. It was also a validation of Dick Hamming’s prediction that com-

puting would displace laboratories. The focus was on numerical linear alge-

bra, differential and integral equations, function approximation, and mathe-

matical libraries that could make the best known methods widely available.
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Figure 5.18: Rob Pike, ∼1981 (Courtesy of Gerard Holzmann)

Phyllis Fox was a pioneer in this kind of numerical computation, and was

a major contributor to the PORT library for Fortran programmers. PORT

defined machine-specific constants for values like the ranges of numbers that

would be different for different computers; its libraries assured portability of

Fortran code across different computers.

The PORT library was a large body of work, ultimately with 130,000

lines of Fortran in 1,500 programs and a lot of documentation. Barbara

Ryder and Stu Feldman developed a Fortran compiler called PFORT, which

checked that Fortran code was written in a portable subset of standard For-

tran. Norm Schryer wrote a program to check the arithmetic operations of

computers, which often differed greatly in how they did floating-point arith-

metic. This was especially important since it predated the development of

standards for floating-point behavior.

Eric Grosse and Bill Coughran developed algorithms for semiconductor

modeling and simulation, circuit analysis, and visualization, especially for

semiconductor design and fabrication. Much of the numerical software

developed at Bell Labs was distributed worldwide through the Netlib reposi-

tory of mathematical software, which is still widely used by the scientific

computing community. Other numerical analysts who made significant con-

tributions to Netlib and the larger community included Dave Gay, Linda

Kaufman, and Margaret Wright.
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AT&T’s 800-number directory

Eric Grosse’s experience with software distribution was a big help in a fun

unrelated project: in 1994, Eric, Lorinda Cherry and I put AT&T’s 800-num-

ber directory on the then brand new Internet. The intent was for AT&T to

gain some experience with providing a real Internet service (and with the

Internet itself), perhaps to generate extra calls to 800 numbers, and even ulti-

mately to provide revenue through enhanced services like display advertise-

ments. In addition, we hoped for some modest public relations benefit from

providing something of real value, not merely a teaser like so many Internet

offerings at the time.

We obtained a database snapshot of 157,000 records, about 22 MB, in

August 1994 and in a few hours had it running on a local computer as a

searchable and browsable web site. Convincing AT&T management to make

it public was a much slower process. After much internal deliberation, how-

ev er, managerial reluctance and inertia eventually succumbed to a rumor that

AT&T’s competitor MCI was about to offer some Internet service, and the

directory went public on October 19, 1994. It was AT&T’s first web service.

The political delay was mildly frustrating, but the data story was instruc-

tive. The database was replete with errors, a host of listings that clearly no

one had ever looked at with a critical eye, such as 9 different spellings of

Cincinnati. (They would make a good example of a regular expression.)

In spite of its imperfections, the directory service garnered some public

relations benefit: it was listed for a while as the first of the “Cool Links” on

the Yahoo WWW Guide. (Yahoo itself was founded early in 1994, and its

indexing was entirely manual.) AT&T scored a minor victory over MCI by

being first with a useful service, though it was a near thing. The directory did

make AT&T appear to be involved in the Internet and it stimulated a signifi-

cant amount of internal discussion and plans to make plans for planning fur-

ther services. If nothing else, the experience brought home the remarkable

rate at which the Internet was growing and changing; as my unofficial report

said at the time, “We hav e to learn to act quickly in this area if we are to be in

it at all.”

UUCP

In the mid 1970s, Mike Lesk wrote UUCP, the Unix to Unix copy pro-

gram. It was used to send files from one Unix system to another, generally

using ordinary phone lines. Those were slow and sometimes expensive, but

they were ubiquitous and most Unix systems of the time had some kind of

dial-up access, though fewer had dial-out capabilities, since that would
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involve paying for phone calls.

Although UUCP was primarily used for software distribution, it was also

the basis of remote command execution, mail transfer and news groups long

before the Internet was widely available. Usenet, which was one of the first

worldwide information distribution systems, was based on UUCP.

The first UUCP distribution was included in the 7th edition; it was

refined, ported to other operating systems, and made open source over the

next few years. UUCP usage finally died out as the Internet became the stan-

dard communications network and its protocols took over.

Security

People in the Unix community had been concerned with security from the

earliest days, an interest that came in part from Multics, and in part from

experience in cryptography.

One security concern was to allow file system users to control access to

their files. The Unix file system used 9 bits for each file to control what

kinds of access could be made to the file. The file’s owner had three bits,

independently controlling read access, write access, and execute access. For

a regular text file, read and write would normally be allowed for the owner,

and execute would not, unless the file was an executable program or a shell

script. There were three more bits for the owner’s group, which might be

something like a department or a project or a faculty/student distinction. The

final three bits applied to all other users.

This mechanism was substantially simpler than what Multics had pro-

vided, but it has served well for a long time. For example, standard com-

mands like editors, compilers, shells, and so on, are owned by a privileged

account, typically the root user, which can read, write and execute them at

will, but ordinary users can only execute (and perhaps read) but not write

them. Note that it is possible to execute a program without being able to read

its contents; in that way, the program can safely contain protected informa-

tion.

One early refinement was a 10th permission bit, called the setuid (set user

id) bit, for each file. When this bit is set, and the file is executed as a pro-

gram, the user id for checking permissions is not the person running the pro-

gram but the owner of the file. If the bit is set, an ordinary user can run a

program with the privileges of the program’s owner. This is used for pro-

grams that manipulate the file system to create directories, rename files, and

so on: programs that execute privileged system calls are owned by a super-

user that has unrestricted access. Naturally, setuid programs have to be
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carefully written and managed; if not, they can open large holes in system

security. Setuid was invented by Dennis Ritchie, who received a patent for it

in 1979.

As mentioned earlier, the idea of passwords originated with CTSS and

was followed through in Multics and then into Unix. A text file called

/etc/passwd contains one line for each user, with login name, user id number,

password, and a few other fields. From earliest times, the password was

stored in a hashed form, not in the clear. Hashing is a form of scrambling for

which the only practical way to recreate the original is to try all possible

passwords. This meant that anyone can read the password file but can’t use

the hashed passwords to login as someone else.

That’s the theory. If the hashing isn’t good or if people choose passwords

poorly, howev er, decryption may be possible. Ken and Bob Morris collected

password files from a variety of Unix systems and experimented with dictio-

nary attacks, trying plausible passwords to see if they hashed to what was

stored in the password file. Their studies in the mid 1970s showed that 10 to

30 percent of passwords could be obtained this way.

Dictionary attacks are still effective, though the technology on all sides is

more sophisticated. One would hope that today’s users are more aware of the

perils of weak passwords, but recent lists of frequently used passwords sug-

gest that they are not. (As an aside, this attack was also used in the Morris

Worm of 1998, when Robert T. Morris, son of Bob, inadvertently released a

program that tried to log in to Unix systems on the Internet and propagate

itself. One of its mechanisms was to use a dictionary of likely passwords,

like “password” and “12345.”)

Bob wrote the original Unix crypt command. He retired from Bell

Labs in 1986, to become the chief scientist at the National Security Agency

(NSA), which suggests that he did know a fair amount about computer secu-

rity and cryptography. He died in 2011 at the age of 78.

Cryptography was an on-going interest of several 1127 members, includ-

ing Bob, Ken, Dennis, Peter Weinberger and Fred Grampp (Figure 5.19).

(Dennis’s web page tells some interesting behind-the-scenes stories.)

Although encryption today is all done with software, it was done by mechan-

ical devices during the Second World War. The German military used the

Enigma machine, and somehow Fred obtained one. One story has it that he

bought it on the open market; another says that his father, an American GI,

brought it back from Germany after the end of the war. Fred kept it at Bell

Labs and when he died left it to Ken Thompson, where it sat in the bottom

drawer of Ken’s file cabinet, across the hall from me.
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Figure 5.19: Fred Grampp, ∼1981 (Courtesy of Gerard Holzmann)

One day I borrowed it for a class I was teaching at Princeton that included

a lecture on cryptography. I asked if anyone had ever seen an Enigma. No,

no one had, so I pulled it out from under the table. I hav e never before or

since seen such interest from my students, some of whom were literally

standing on the table to get a proper look. Ken subsequently donated the

Enigma to a museum.

When Ken and Dennis won the Turing Award in 1983, Ken’s prescient

talk, “Reflections on Trusting Trust,” explained a series of modifications that

he could make to a compiler that would eventually install a Trojan horse in

the login program for a system.

“You can’t trust code that you did not totally create yourself. (Espe-

cially code from companies that employ people like me.) No amount

of source-level verification or scrutiny will protect you from using

untrusted code.”

As he noted, the same kinds of tricks can be applied to hardware, where they

will be even harder to discover. Things have not gotten better in the interim,

and the paper is still highly relevant today.

Hardware

Software was the primary activity in 1127, but hardware interests were

well represented too. In the early days, it often required hardware expertise
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to connect odd devices to the PDP-11; examples included the Votrax voice

synthesizer, telephone equipment, typesetters, and a variety of network

devices. This led over the years to the development of a suite of computer-

aided design (CAD) tools, and involved a number of people, like Joe Con-

don, Lee McMahon, Bart Locanthi, Sandy Fraser, Andrew Hume, and others

that I am surely forgetting.

Bart used the CAD tools to design and build a bitmap terminal in the early

1980s. At the time most terminals could only display 24 rows of 80 fixed

width and fixed height ASCII characters. By contrast, a bitmap terminal dis-

played a large array of pixels, each of which could be independently set to a

value, like the screens of all laptops and cell phones today, though the first

bitmap displays were monochrome. Bart originally called his bitmap termi-

nal the Jerq, an oblique reference to a somewhat analogous device called

Perq offered by a Pittsburgh company named Three Rivers.

The Jerq started life with a Motorola 68000 processor, which was popular

at the time (it was often used in workstations, for example), but both the

name and the implementation fell victim to corporate politics. The Jerq was

renamed the Blit (after the bitblit operation for rapidly updating screen con-

tents) but was made only in small quantities. Western Electric, still the man-

ufacturing arm of AT&T, redesigned it to use a Bellmac 32000, a processor

chip designed by Bell Labs and manufactured by Western Electric. “Blit”

was replaced by the catchy “DMD-5620.” The redesign cost a full year and

AT&T lost whatever chance it might have had to compete in the growing

workstation marketplace.

Rob Pike wrote most of the operating system for the Blit and the 5620.

Its most novel aspect was that computation could proceed in multiple over-

lapping windows. Overlapping windows had been seen before, but only one

of them could be active at a time. Rob got a patent on the improvement.

The 5620 was a good graphics terminal, though physically heavy and

bulky. I used it to write graphical programs such as a Troff previewer. It was

also the environment in which Rob Pike wrote a series of mouse-based text

editors, one of which I use by preference even today: this book was written

with Sam.

There was also a sustained interest in integrated circuits and VLSI (Very

Large Scale Integration). In 1980, Center 1127 offered a three-week crash

course in integrated circuit design taught by Carver Mead of Caltech. Lynn

Conway and Carver had literally written the book (Introduction to VLSI Sys-

tems, 1980) on how to design and implement integrated circuit chips, and

their course had already been given at a number of universities. Carver had a

gift for telling a carefully calibrated sequence of lies about how circuits
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worked. The simplest version was that when a red line crossed over a green

line, that made a transistor. Of course this gross over-simplification was

unmasked, to be replaced by another more sophisticated lie, which in turn

would be further refined.

As a result of this excellent instruction, everyone in Carver’s class was

able to design and build some kind of experimental chip after a couple of

weeks of training. The chips were fabricated at the Bell Labs plant in Allen-

town, Pennsylvania, and returned for experimentation. At the time, Bell Labs

was using state of the art 3.5 micron technology; today’s circuits are usually

7 to 10 nanometers, an improvement of at least 300 in line widths, and thus

about 100,000 in the number of devices in a given area.

My chip, a simple chess clock, never worked, thanks to a grievous logic

error that was obvious in retrospect. Several people developed support tools

as well as their own chips. My contribution was a program to help route on-

chip wiring, so it was a productive few weeks in spite of my failure as a chip

designer.

Over the years, at least half a dozen people in my department did VLSI in

one form or another—algorithms for checking layouts, simulators, reverse-

engineering, and some theoretical research. I could keep up with what they

were doing, barely, thanks to Carver’s course.

The Center’s interest in VLSI persisted for a long time, ultimately leading

to Dave Ditzel and Rae McLellan’s CRISP (C Reduced Instruction Set Pro-

cessor) microprocessor, which was one of the earliest RISC processors.

“RISC” is an acronym for Reduced Instruction Set Computer, a way to

design processor architectures that are simpler and more regular than ones

like the VAX-11/780.

CRISP aimed at an instruction set that would be well suited for the output

of a C compiler. To design it, Dave worked closely with Steve Johnson.

After discussing potential architecture features, Steve would modify the Por-

table C compiler and run benchmarks to see what effect these features would

have on performance, a great example of hardware/software co-design.

AT&T eventually sold a version of CRISP under the name Hobbit. It was

intended for the Apple Newton, one of the first personal digital assistants, but

neither Newton or Hobbit was a commercial success. Dave left Bell Labs in

1995 to found Transmeta, which focused on low-power processors.

Even though CRISP itself did not succeed commercially, Unix and C had

a large impact on computing hardware in the 1980s and 1990s. Most suc-

cessful instruction set architectures were well-matched to C and Unix. Not

only did Unix and C portability enable universities and especially companies
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to create new architectures and rapidly port software, but it had the effect of

requiring that the instruction set was good for C code, while tending to elimi-

nate features that were hard to compile from C programs. CPU design

methodology like that used by Johnson and Ditzel used statistical analysis of

programs, so C code statistics tended to favor things that made C fast. Unix

and C had a critical mass that caused CPU design in the 1980s and 1990s to

orbit around them; nobody was successfully building CPUs tuned for other

languages.





Chapter 6

Beyond Research

“The Unix operating system presently is used at 1400 universities and col-

leges around the world. It is the basis for 70 computer lines covering the

microcomputer to supercomputer spectrum; there are on the order of

100,000 Unix systems now in operation, and approximately 100 compa-

nies are developing applications based on it.”

R. L. Martin, Unix System Readings and Applications, Vol. 2, 1984

After a few years in the lab in Center 1127, Unix began to spread, both

inside Bell Labs and outside, the latter primarily through universities, which

were able to get the source code for the whole system for a nominal “media

fee” under a trade secret agreement. This was definitely not “open source”:

the system could be used only for educational purposes, and licensees could

talk only to other licensed users about their experience and what they were

doing with Unix. Nevertheless, the community grew rapidly, user groups

sprang up all over the world, and major technical innovations took place, for

example ports of the system to different kinds of hardware and new mecha-

nisms for accessing the Internet.

Bear in mind that many of the activities described in this chapter were

going on in parallel with, or even years before, those of the previous chapter.

This can make the chronology a bit confusing.

6.1 Programmer’s Workbench

The patent department at Bell Labs was the first “customer” outside of the

research area, but other groups found Unix useful as well, and the system

started early to spread within Bell Labs development groups and other parts

of AT&T.
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With over a  million employees, AT&T was a very big company, with

many computer systems for managing the data and operations that supported

telephone services. These systems provided technician interfaces and sup-

port for AT&T, keeping track of equipment and customers, monitoring sys-

tems in the field, logging events, trouble-shooting, and the like. Collectively,

these systems were called “operations support systems.”

One of the first major Unix installations outside of Research was a group

based in Piscataway, New Jersey, about 15 miles from Murray Hill, that in

1973 began to dev elop tools for programmers who did software development

for large-scale production environments. The collection became known as

the Programmer’s Workbench or PWB.

Most operations support systems at AT&T ran on large mainframe com-

puters from IBM and Univac that had their own proprietary operating sys-

tems, such as IBM’s OS/360. PWB provided facilities for creating and man-

aging the software that ran on such computers. In effect, PWB Unix served

as a uniform front end for a diverse set of large non-Unix computer systems;

the mainframes were treated like peripheral devices.

One major PWB service was remote job entry, a set of commands for

sending jobs to target systems and returning the results, including job queue-

ing, status reports, notifications, logging and error recovery. Remote job

entry fit well with the Unix approach of using small tools that could be con-

nected in a variety of ways, and then encapsulated in shell scripts for con-

venient use by non-experts.

To support this kind of programming, John Mashey (Figure 6.1) enhanced

the 6th edition shell to create the PWB shell, which provided much better

programmability, including a general if-then-else for decision-making, a

while for looping, and shell variables for storing text. He also invented a

search path mechanism, so that by setting a particular shell variable, any user

could specify a sequence of directories to be searched for commands. The

search path made it easy for groups of users to collect programs in project

directories, rather than having to install commands in system directories for

which they might not even hav e permission. As John said,

“We had a large (1,000+) population of users who were not usually C

programmers, who worked in groups in shared environments. They

wanted to share their own sets of commands by lab, department,

group. They often shared systems with others and none could be

super-users.”

John also added a mechanism so that if a file was marked executable, it

would either be executed as a regular command, or passed to a shell if it was
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a script. All of these features were in place by early 1975, and refined over

the next year as more and more people began using the PWB shell. John’s

paper “Using a Command Language as a High-Level Programming Lan-

guage” reported on experience with over 1,700 shell procedures:

“By utilizing the shell as a programming language, PWB users have

been able to eliminate a great deal of the programming drudgery that

often accompanies a large project. Many manual procedures have

been quickly, cheaply, and conveniently automated. Because it is so

easy to create and use shell procedures, each separate project has

tended to customize the general PWB environment into one tailored to

its own requirements, organizational structure, and terminology.”

As noted in the previous chapter, John’s improvements soon found their

way back into the shell that Steve Bourne wrote.

Figure 6.1: John Mashey, ∼2011 (Courtesy of Twitter)

Another important PWB product was the Source Code Control System

(SCCS), which was written in 1972 by Marc Rochkind. SCCS was the first

of a sequence of programs for managing large code bases that were being

worked on by several programmers at the same time.

The basic idea of SCCS was to let programmers check out part of the

code base to work on; this locked that part so other programmers couldn’t

change it until the lock holder unlocked it. This prevented multiple program-

mers from making inconsistent changes to the same piece of code at the same

time. Of course there were still problems; for example carelessness or

crashes could leave code locked even though no one was working on it, and if

the locked regions were too big, that slowed down simultaneous changes.

But the idea was crucial for software development that involved multiple
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people working on the same code base, and it’s even more important today

with larger code bases spread across much larger developer communities that

are more geographically dispersed. There’s a clear evolutionary path from

SCCS through RCS, CVS and Subversion, to Git, today’s default standard

version-control system.

Marc Rochkind also invented a tool that converted a set of regular expres-

sions into a C program that would scan logs for occurrences of the patterns

and print messages when one was found. This was such a neat idea that Al

Aho, Peter Weinberger and I stole−−− adapted and generalized it for the pattern-

action model used in Awk.

PWB also included a collection of tools called the Writer’s Workbench

(WWB) that tried to help people to write better. John Mashey and Dale

Smith, with encouragement from Ted Dolotta, created a set of generic Troff

commands, the Memorandum Macro or mm package, that was widely used

both inside AT&T and outside for producing documentation.

In addition, WWB offered a spell checker and programs for finding punc-

tuation mistakes, split infinitives, and double words (often the result of errors

made while editing). There were tools for checking grammar and style, and

for assessing readability. The core component was a program called parts,

by Lorinda Cherry. It assigned parts of speech to the words of a text, and

although imperfect, it yielded statistics on the frequency of adjectives, com-

pound sentences, and the like. WWB was dev eloped in the late 1970s, just

about the time when computers were being more frequently used by writers,

and WWB got some good press, including an appearance on national TV on

NBC’s Today show for two of its creators, Lorinda and Nina McDonald.

As an example of how computing hardware has become cheaper and more

powerful over the years, a 1978 PWB paper by Ted Dolotta and Mashey

described the development environment, which supported over a thousand

users: “By most measures, it is the largest known Unix installation in the

world.” It ran on a network of 7 PDP-11’s with a total of 3.3 megabytes of

primary memory and 2 gigabytes of disk. That’s about one thousandth of a

typical laptop of today. Would your laptop support a population of a million

users?

6.2 University licenses

In 1973, AT&T began licensing Unix to universities for a nominal fee,

though most licenses were for the 6th edition, which became available in

1975. There were some commercial 6th edition licenses as well, but these

cost $20,000, which would be more like $100,000 today. Licenses did
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include all the source code, but came with no support whatsoever.

One of the most active license recipients was the University of California

at Berkeley (UCB), where a number of graduate students made major contri-

butions to the system that eventually became the Berkeley Software Distribu-

tion (BSD), one of two main branches that evolved from the original

Research Unix.

Ken Thompson spent a sabbatical year at Berkeley in 1975 and 1976,

where he taught courses on operating systems. Bill Joy (Figure 6.2), a grad

student at the time, modified the local version of Unix, and added some pro-

grams of his own, including the vi text editor, which is still one of the most

popular Unix editors, and the C shell csh. Bill later designed the TCP/IP

networking interface for Unix that is still used today. His socket interface

made it possible to read and write network connections with the same read

and write system calls as were used for file and device I/O, so it was easy

to add networking functionality.

Bill occasionally visited Bell Labs during the mid to late 1970s. I remem-

ber one evening when he showed me the new text editor that he was working

on. By this time, video display terminals had replaced paper terminals like

Teletypes, and they enabled a much more interactive style of editing.

In ed and other editors of the time, one typed commands that modified

the text being edited, but they did not continuously display the text; instead,

if an editing command changed some text, it was necessary to explicitly print

the new line. In ed, one might say

s/this/that/p

to substitute this into that in the current line and print the result. Other

commands made it possible to change occurrences in multiple lines, search

for lines, display ranges of lines, and so on. In the hands of experts, ed was

very efficient, but not intuitive for newcomers.

Bill’s editor used cursor addressing to update the screen as text was being

edited. This was a major change from the line-at-a-time model: one moved

the cursor to this (perhaps by using a regular expression), typed a com-

mand like cw (“change word”), and then typed that, which immediately

replaced the original.

I don’t recall what I said at the time about the editor itself (though today

vi is one of the two editors that I use most often), but I do remember telling

Bill that he should stop fooling around with editors and finish his PhD. For-

tunately for him and for many others, he ignored my advice. A few years

later, he dropped out of graduate school to co-found Sun Microsystems, one

of the first workstation companies, with software based on Berkeley Unix,
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including his fundamental work on the system, networking and tools (and his

vi editor). I often cite this story when students ask me for career advice—

older is not always wiser.

Figure 6.2: Bill Joy, ∼1980 (Courtesy of Bill Joy)

6.3 User groups and Usenix

Since AT&T offered no support at all to Unix licensees, users were forced

to band together to help each other, in what eventually became regular meet-

ings with technical presentations, software exchanges, and of course social

activities. This idea was certainly not original with Unix; the SHARE user
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group for IBM systems was established in 1955 and is still active, and there

were user groups for other hardware manufacturers as well.

The first Unix user group meeting was held in New York in 1974, and

user groups gradually sprang up all over the world. In 1979, Ken and I

attended the first meeting of the UKUUG, which was held at the University

of Kent in Canterbury. It was quite an experience for me, the first time I had

visited England. Ken and I flew to Gatwick Airport on Laker Airways, the

first of the cheap trans-Atlantic airlines. We drove to Salisbury and visited

the cathedral and Stonehenge, then went on to Canterbury for the meeting

(and to visit the cathedral). Afterwards I spent a few days in London as a

wide-eyed tourist.

I hav e since visited several other countries, using Unix user group meet-

ings as an excuse and a great way to meet some very nice people. The most

memorable was a trip to Australia in 1984, again with Ken, where the meet-

ing was held in the Sydney Opera House. I gav e a talk on the morning of the

first day, then spent the rest of the week watching the harbor from a window

of the conference room; it was so fascinating that I have no memory of any of

the other talks.

The user groups evolved into an umbrella organization called “Unix User

Groups,” which was renamed USENIX (Usenix from now on) after AT&T

complained about mis-use of the Unix trademark. Usenix now runs an exten-

sive series of professional conferences and publishes a technical journal

called “;login:”. Usenix played a significant role in spreading Unix, with

conference presentations and tutorials on many subjects. It also distributed

UUCP and ran the Usenet news system.

6.4 John Lions’ Commentary

John Lions (Figure 6.3), a professor of computer science at the University

of New South Wales in Sydney, was an enthusiastic early adopter of Unix,

and used it extensively in courses on operating systems as well as for general

educational and research support at UNSW.

In 1977, John wrote a line-by-line “commentary” on the 6th edition

source code. Every part of the source code was explained in detail, so one

could see how it worked, why it was the way it was, and how it might be

done differently. John also produced a number of excellent students, several

of whom wound up at Bell Labs.

In the original printing, the Commentary was in two separate volumes, the

code in one volume and the exposition in the other, so that they could be read

side by side, though the authorized version (Figure 6.4), which finally
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Figure 6.3: John Lions (Courtesy of UNSW)

appeared in 1996, is a single volume.

Although it could be shared among Unix licensees, the book was techni-

cally a trade secret since it contained AT&T’s proprietary source code.

Copies were carefully controlled, at least in theory; I still have my numbered

copy (#135). But it was widely copied in the early days; the samizdat

imagery on the cover in Figure 6.4 suggests that such copies were made clan-

destinely. Years later, reality was acknowledged and John’s book was pub-

lished commercially.

John spent a sabbatical year in 1978 at Murray Hill, across the hall from

me in the office that later belonged to Dennis Ritchie. John died in 1998 at

the age of 62. His contributions have been remembered in a chair of com-

puter science at UNSW. The chair was funded by donations from alumni and

friends, including Ted Dolotta’s 1998 auction of his California UNIX license

plate, bought by John Mashey.

One comment in the Unix source has become famous, thanks to the Com-

mentary. Line 2238 says

/* You are not expected to understand this. */
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Figure 6.4: John Lions’ Commentary on 6th Edition Unix

As mentioned earlier, Dennis died in October 2011. I used this comment

as the core of a tribute to Dennis during a memorial gathering at Bell Labs

the following year.

The Unix kernel code was jointly written by Dennis and Ken Thompson.

As far as I know, Ken always subscribed fully to the idea that good code

doesn’t need many comments, so by extrapolation, great code needs none at

all; I think that most of the comments in the kernel come from Dennis. The

specific comment, which you can find on line 2238, is famous for its dry wit,

and it was widely available on t-shirts and the like for years. As Dennis him-

self said,

“It’s often quoted as a slur on the quantity or quality of the comments

in the Bell Labs research releases of Unix. Not an unfair observation

in general, I fear, but in this case unjustified.”

If you go back and look, you can see that the comment comes just after a

much longer comment that describes the context-switching mechanism that

swaps control between two processes, and it really was trying to explain

something difficult. Dennis went on to say,

“ ‘You are not expected to understand this’ was intended as a remark in
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the spirit of ‘This won’t be on the exam,’ rather than as an impudent

challenge.”

I mentioned earlier that Nroff and Troff were difficult tools to master. The

final paragraph of the acknowledgments section of the Lions Commentary

suggests that John would concur:

“The cooperation of the nroff program must also be mentioned. With-

out it, these notes could never hav e been produced in this form. How-

ev er it has yielded some of its more enigmatic secrets so reluctantly,

that the author’s gratitude is indeed mixed. Certainly nroff itself must

provide a fertile field for future practitioners of the program docu-

menter’s art.”

6.5 Por tability

The 6th edition of Unix was mostly written in C, with a limited assembly

language assist to access machine features that were otherwise not available,

for example, setting up registers, memory mapping, and the like. At the

same time, Steve Johnson had created a version of the C compiler that was

“portable” in the sense that it could be straightforwardly retargeted to gener-

ate assembly language for architectures other than the PDP-11. This made it

possible to move C programs to other kinds of computers merely by recom-

piling them. The most interesting program to port would obviously be the

operating system itself. Would that be feasible?

The first port of Unix was done at the University of Wollongong in New

South Wales, Australia, by Richard Miller; the target computer was an Inter-

data 7/32. Miller didn’t use the portable C compiler. Instead he bootstrapped

his way onto the Interdata by modifying the code generator of Dennis

Ritchie’s original C compiler. His version of Unix was working and self-sus-

taining by April 1977.

Independently, and without knowing of Miller’s work, Steve Johnson and

Dennis Ritchie ported Unix to a similar machine, the Interdata 8/32. Their

goal was somewhat different, a version of Unix that was more portable,

rather than a single port of the original as it was. They got their version run-

ning late in 1977. Steve Johnson recalls some of the background:

“There was another pressure to make Unix portable. A number of

DEC’s competitors were beginning to grumble that regulated AT&T

had too cozy a relationship with DEC. We pointed out that there were

no other machines like the PDP-11 on the market, but this argument
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was getting weaker. Dennis hooked me into the portability effort with

one sentence: ‘I think that it would be easier to move Unix to another

piece of hardware than to rewrite an application to run under a differ-

ent operating system.’ I was all in from that point on.”

Portability was a great step forward. Up to this point, operating systems

had mostly been written in assembly language, and even if written in a high-

level language were more or less tied to a particular architecture. But after

projects like those done by Miller, and Johnson and Ritchie, porting Unix to

other kinds of computers, though not trivial, was basically straightforward.

This had major implications for the emerging workstation marketplace,

where companies both old and new were building computers that were

smaller and cheaper than minicomputers like the PDP-11 and the Interdata,

and used different processors.

Workstations were meant to be personal machines for scientists and engi-

neers, giving them a powerful and normally unshared computing environ-

ment. There were many examples of workstations, of which the ones from

Sun Microsystems were the most commercially successful. Other manufac-

turers included Silicon Graphics, DEC, Hewlett-Packard, NeXT and even

IBM. The first workstations, in the early 1980s, aimed for a megabyte of pri-

mary memory, a meg apixel display, and a speed of one megaflop (a million

floating-point operations per second), a so-called “3M” machine. For com-

parison, my elderly Macbook has 8 gigabytes of memory and a speed of at

least a gigaflop; its display is little more than a megapixel, but the pixels are

24-bit color, not monochrome.

The workstation marketplace arose because technological improvements

made it possible to pack serious computing horsepower into a small physical

package and sell it for a modest price. The complete system price could be

reasonable in part because software, including the operating system, was

already available. There was no need for new manufacturers to create a new

operating system—it was enough to port Unix and its accompanying pro-

grams to whatever processor the computer used. The workstation market was

thus helped significantly by the availability of Unix.

The IBM Personal Computer (PC) first appeared in 1981. The PC and its

many clones were typically 5 to 10 times cheaper than a workstation.

Though they were originally not at all competitive in performance, they grad-

ually improved, and by the end of the 1990s were at least as good. Any dis-

tinction between workstation and PC eventually blurred. Today, depending

on application areas, such machines most often run Microsoft Windows,

macOS, or a Unix or Unix-like system.





Chapter 7

Commercialization

“As Unix spread throughout the academic world, businesses eventually

became aware of Unix from their newly hired programmers who had used

it in college.”

Lucent web site, 2002

“Unix and C are the ultimate computer viruses.”

Richard Gabriel, “Worse is Better,” 1991

It had been argued that AT&T was prohibited from selling Unix commer-

cially because as a regulated public monopoly, if it did so, it would be com-

peting with other operating system vendors, using revenues from telephone

services to cross-subsidize Unix development. The closest that AT&T came

to making a real business was to license Unix to corporate customers for

$20,000 (in contrast with the nominal media fee for educational institutions)

but in limited quantities and without support. That was enough to head off

regulatory scrutiny.

7.1 Divestiture

By 1980, AT&T’s position as a monopoly, regulated or not, was coming

under attack. The US Department of Justice had begun an antitrust lawsuit

against AT&T in 1974, on the grounds that AT&T controlled not only tele-

phone service for most of the country but also the equipment used by its tele-

phone companies, and thus that AT&T controlled communications for the

whole country. The DoJ proposal was that AT&T should be forced to divest

its manufacturing arm, Western Electric, which made the equipment.
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AT&T proposed instead to address the situation by splitting the company

into one part (called AT&T) that would provide long distance telephony, and

seven regional operating companies (“Baby Bells”) that would provide local

phone service in their respective geographic areas. AT&T would retain West-

ern Electric but the operating companies would no longer be required to buy

equipment from it. AT&T would also keep Bell Labs.

The consent decree with the Department of Justice, by which AT&T

divested itself of the operating companies, was finalized early in 1982, and

took effect January 1, 1984.

Divestiture was an enormous upheaval, which in the long run led to mis-

fortune for AT&T, and 20 years of subsequent misjudgments and poor busi-

ness choices made Bell Labs into a shadow of what it had been when its mis-

sion was clear and its funding was adequate and stable.

In 1984, part of Bell Labs was spun off into a research organization origi-

nally called Bellcore (“Bell Communications Research”) that was to provide

research services for the Baby Bells. The Bellcore split took a fair number of

people from Bell Labs research, primarily in communications areas, but also

some colleagues from 1127, including Mike Lesk and Stu Feldman. At some

point, the Baby Bells decided that they didn’t need the kind of research that

Bellcore provided, and Bellcore was purchased by another company, SAIC,

renamed Telcordia, and eventually wound up owned by the Swedish telecom

company Ericsson.

1984 was also the year that “Bell Labs” became “AT&T Bell Laborato-

ries,” since as part of the consent decree, AT&T was not permitted to use the

name “Bell” except in this special case and only if preceded by “AT&T.” We

were strongly encouraged to use the full name at all times.

7.2 USL and SVR4

After divestiture, AT&T’s inability or at least reluctance to sell Unix gav e

way to a substantial commercial effort by a part of the company that was

organizationally far removed from Research. It was also somewhat removed

physically, located in a building near Summit, New Jersey; surrounded by

busy highways, it was informally known as “Freeway Island.” The organiza-

tion was originally called the Unix Support Group (USG) and eventually

became Unix System Laboratories, or USL. The first USG was created by

Berk Tague in 1973, to focus on operations support systems. Over time,

USG broadened its activities to include external sales and marketing.

There was definitely a market for Unix; one might even say that AT&T

had inadvertently created the market by giving Unix away to university
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students, who then wanted it when they entered the real world and worked

for companies that could afford to pay real money for it. Beginning in 1984

USL marketed Unix aggressively, and worked hard to make it a professional

commercial product. The culmination was a version called System V

Release 4, or SVR4. AT&T invested substantial resources to making this

version a standard, with reference implementations and careful definitions for

both source and object compatibility. I think that this attention to standards

and interoperability was important.

The ins and outs of how SVR4 evolved and AT&T’s interactions with

cooperators and competitors over a decade are intricate and uninteresting.

I’m not going to say anything more about them, since in a way it’s all moot:

the industry focus has shifted almost entirely to Linux. The Wikipedia article

on System V summarizes the situation, probably accurately, like this:

“Industry analysts generally characterize proprietary Unix as having

entered a period of slow but permanent decline.”

Of course the operative word is “proprietary”; open-source versions like the

BSD family described in the next chapter are alive and well.

AT&T’s product line included the operating system and a variety of sup-

porting software, including compilers for C, C++, Fortran, Ada and even Pas-

cal, mostly based on Steve Johnson’s portable C compiler. There was also a

major standardization effort to ensure compatibility for source code and for

binary formats in libraries.

At this point I was Bjarne Stroustrup’s department head, which meant fre-

quent interactions with USL about the evolution of C++. For the most part,

these were amicable, but there were occasions when the different priorities of

research and product management were visible. One heated discussion with

a USL manager in 1988 went something like this:

Manager: “You have to fix all the bugs in the C++ compiler, but you

can’t change the behavior in any way.”

Me: “That’s not possible. By definition, if you fix a bug, the behavior

is necessarily different.”

Manager: “Brian, you don’t understand. You have to fix the bugs but

the compiler’s behavior can’t change.”

Pedantically I was right, but practically I can see what the manager was get-

ting at—too much or too rapid change is a serious problem for those who are

doing software development with new languages and tools.
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USL set up a subsidiary in Japan called Unix Pacific, where the manager

was Larry Crume, a Bell Labs colleague from years earlier and well known

to many in the research group. This led to technical collaborations, and I got

to visit Japan twice on the company’s money. On one of these trips, some

kind of feel-good exchange with NTT, Japan’s major telephone company,

there was a strikingly clear view of the pecking order. The executive director

got to play golf with his NTT counterpart. The center director played tennis

with his counterpart. Lowly department heads like me were offered a shop-

ping trip in Tokyo, which I declined with thanks.

Although AT&T’s efforts to commercialize Unix were not always suc-

cessful, Unix standardization was invaluable for the whole community.

There were occasional tensions between Research and the USL effort, but for

the most part, USL had a large group of talented colleagues who made signif-

icant contributions to Unix and related software systems.

7.3 UNIX™

Sometime early in the life of Unix, Bell Labs’ legal guardians decided

that the name Unix was a valuable trademark that had to be protected, which

was certainly a correct business decision. They were trying to avoid having

the name become a generic term that could be used by anyone, as had hap-

pened to words like aspirin (in the US, though not everywhere), escalator,

zipper and (much more recently) App Store.

As a consequence, however, people inside Bell Labs were required to use

the name correctly. In particular, it could not be used as a standalone noun

(“Unix is an operating system”). It had to be identified as a trademark and

also had to appear as an upper-case adjective in the phrase “the UNIX™

operating system,” which led to awkward sentences like “The UNIX™ oper-

ating system is an operating system.” Rob Pike and I had to fight this battle

over the title of our 1984 book The Unix Programming Environment, which

would otherwise have been something like The UNIX™ Operating System

Programming Environment. The eventual compromise: there is no footnote

or trademark indicator on the cover, but on the title page there is an almost

invisible asterisk and a footnote.

The klunky phrasing was a pain, especially for people who took their

writing seriously, so there were workarounds and occasional attempts to

evade the issue. For instance, in the standard Troff macro package ms, Mike

Lesk added a formatting command that expanded into “UNIX” wherever it

was used, and automatically generated a footnote on the first page where it

appeared (with the name in upper case, of course). Normally the footnote
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said

† UNIX is a trademark of Bell Laboratories.

but if the command was used with an additional undocumented parameter, it

would instead print

† UNIX is a footnote of Bell Laboratories.

I don’t think that anyone ever noticed when we occasionally used this Easter

egg, but the code is still there in the standard macro package.

Other uses of the word Unix for goods and services had nothing to do

with operating systems, like the pens in Figure 7.1, the bookcases in Figure

7.2, and the fire extinguisher in Figure 7.3. They all seemed to be from out-

side the United States and thus beyond US trademark laws; the bookcases

date from 1941, before Ken and Dennis were born. One other charming

example is Unix baby diapers from a company called Drypers, which came

up with “Unix” as a contraction of “unisex.”

Figure 7.1: Unix pens (Courtesy of Arnold Robbins)

7.4 Public relations

There was always a steady flow of visitors to Bell Labs, and from the mid

1970s until well into the 1980s, a Unix presentation was a frequent stop for

tourists. A small group of visitors would sit in a conference room while

some member of the Center gav e them a quick overview of what Unix was

all about and why it was important to AT&T and the world. Mike Lesk and I

probably did more of these demos than everyone else put together, which

may have reflected defects in our personalities, since we both complained but

in fact enjoyed them.

The visitors themselves ranged from ordinary mortals to “distinguished,”

a synonym for “influential” or “important for AT&T to impress” or merely
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Figure 7.2: Unix sectional bookcases, 1941 (Courtesy of Ian Utting)
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Figure 7.3: A Unix fire extinguisher

“big name.” For example, in 1980 I did a demo for Walter Annenberg,

founder of TV Guide (which is where he made the money that perhaps helped

him to become Ambassador to the Court of St James, though that role was

over by the time I showed him the wonders of Unix). As a measure of his

importance, he was accompanied by Bill Baker, the president of Bell Labs.

My personal shtick often involved a demo of pipes, showing how pro-

grams could be fluidly combined to do quicky ad hoc tasks. I used a shell

script for finding potential spelling errors in a document, since it was a neat

example of a long pipeline and helped to make the point about how existing

programs could be combined in novel ways.

The spell script originated with Steve Johnson. The basic idea was to

compare the words of a document to the words in a dictionary. Any word

that occurred in the document but not in the dictionary was potentially a

spelling mistake. The script looked approximately like this:
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cat document |

tr A-Z a-z | # convert to lower case

tr -d ’,.:;()?!’ | # remove punctuation, ...

tr ’ ’ ’\n’ # split words into lines

sort | # sort words of document

uniq | # eliminate duplicates

comm -1 - dict # print lines found in input but

# not in dictionary

All these programs already existed; comm, the most unusual, was used for

tasks like finding lines that were common to two sorted input files, or lines

that were in one input or the other but not both. The “dictionary” was

/usr/dict/web2, the words in Webster’s Second International dictionary, one

per line, which we saw earlier.

Figure 7.4: Unix building blocks, ∼1980 (Courtesy of Bell Labs)

One day I was scheduled to do a demo for William Colby, who at the time

was the director of the Central Intelligence Agency (CIA), and thus clearly

an important person. He too would be accompanied by Bill Baker, who as

head of the President’s Foreign Intelligence Advisory Board had serious

spook credentials of his own.

I wanted to make the point about how Unix made some kinds of program-

ming easy, but the spell script was not very fast and I didn’t want the demo

to drag on. So I ran the script ahead of time, captured the output in a file,

then wrote a new script that merely went to sleep for two seconds, then
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printed the results that had been computed the day before:

sleep 2

cat previously.computed.output

This bit of demo engineering worked well; if he understood it at all, Mr

Colby must have thought that spell checking ran fast enough. Of course

there’s a lesson here for everyone who has ever sat through a demo: be wary

of what you’re seeing!

The PR operation also made promotional movies that talked about the

wonders of Bell Labs, including a number that featured Unix. Thanks to

YouTube, I can see old friends (and myself) when we were all younger and in

several cases had more and darker hair.

There was even a brief flurry of print advertising for Unix. I think the

children’s blocks in the advertisement in Figure 7.4 were my idea, for better

or worse. The background, too hard to see here, is a Troff document that I

provided.





Chapter 8

Descendants

“... from so simple a beginning endless forms most beautiful and most

wonderful have been, and are being, evolved.”

Charles Darwin, The Origin of Species, Chapter 14, 1859

Unix began in the Computing Science Research Center in 1969. There

were internal versions like PWB that supported the Programmer’s Work-

bench tools, of course, but starting in 1975, external versions appeared as

well, originally based on the 6th edition, and then later on the 7th edition,

which appeared in 1979.

The 7th edition was the last Research version of Unix to be released and

widely used. Three more editions were developed and used internally (pre-

dictably called 8th, 9th, and 10th) but by the time the 10th edition was com-

pleted in late 1989, it was clear that the center(s) of gravity of Unix develop-

ment had moved elsewhere.

Tw o threads evolved from the 7th edition, one from Berkeley that built on

the work of Bill Joy and colleagues, and another from AT&T as it tried to

build a money-making business out of its Unix expertise and ownership. The

timeline in Figure 8.1 is an approximation and omits numerous systems; real-

ity was more complicated, especially in how the versions interacted.

8.1 Berkeley Software Distribution

In 1978, DEC introduced a new computer, the VAX-11/780. The VAX

was a 32-bit machine with substantially more memory and computing horse-

power than the PDP-11, while remaining culturally compatible with it. A

16-bit computer uses 16 bits for a memory address, while a 32-bit computer
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Figure 8.1: Unix timeline, from Wikipedia
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uses 32 bits and thus can address a much larger amount of primary memory.

When the VAX-11/780 first appeared, John Reiser and Tom London, who

were in a research group at Bell Labs in Holmdel, New Jersey, ported the 7th

edition to it, but their version, 32/V, did not use the virtual memory capabili-

ties of the new machine and thus did not take full advantage of what the VAX

could do.

Bill Joy and his colleagues at the Computer Systems Research Group at

the University of California, Berkeley, started with Reiser and London’s 32/V

and added code to use virtual memory. This version quickly supplanted 32/V

and the VAX itself became the primary Unix machine for most users as they

outgrew the PDP-11. The Berkeley version was packaged and shipped to

Unix licensees as BSD, the Berkeley Software Distribution. BSD descen-

dants are still active, with variants like FreeBSD, OpenBSD and NetBSD all

continuing development. NextSTEP, used for Apple’s Darwin, the core of

macOS, was also a BSD derivative.

One of the early Berkeley distributions formed the base of SunOS, which

was used on computers from Sun Microsystems, co-founded by Bill Joy.

Others spun off a few years later into the BSD variants mentioned above. All

of these eventually were reimplementations that provided the same function-

ality but with entirely new code. Once rewritten, they were free of AT&T

code and thus did not infringe AT&T’s intellectual property.

Another spinoff was created for NeXT, which was founded by Steve Jobs

in 1985. The NeXT workstation had a variety of innovative features, and was

an early example of the elegant and polished industrial design that Apple

users are familiar with. I was in the audience at Bell Labs on December 11,

1990, when Jobs gav e a demonstration of the NeXT. It was a very nice

machine, and it was the only time that I can recall thinking “I want one of

those” about any technological gadget. I had obviously been seduced by the

famous Jobs “reality distortion field.” When he did another presentation at

the Labs three years later, there was no such effect, and I don’t even remem-

ber what he was showing off.

Although the NeXT computer itself was not a commercial success, the

company was bought by Apple in 1997, and Jobs returned to his old com-

pany, becoming CEO within a year. One can still see some of the NextSTEP

operating system legacy in names like NSObject and NSString in Objec-

tive-C programs.

The timeline reveals another little known fact: in the 1980s Microsoft dis-

tributed a version of Unix called Xenix; Figure 8.2 is part of an advertise-

ment from the time. One wonders how different the world would be today if
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Microsoft had pushed Xenix instead of its own MS-DOS, and if AT&T had

been easier to deal with than it apparently was. According to The Unix Her-

itage Society, the Santa Cruz Operation (SCO) later acquired Xenix, which in

the mid to late 1980s was the most common Unix variant as measured by the

number of machines on which it was installed.

Figure 8.2: Xenix: Microsoft’s version of Unix

8.2 Unix wars

In the late 1980s there were numerous vendors of Unix systems, all using

the trademarked name, and purveying software at least originally based on

Version 7 from Bell Labs research. There were incompatibilities, however,

particularly between AT&T’s System V and the Berkeley distributions. All

parties agreed that it would be highly desirable to have a common standard,

but naturally disagreed on what it would be.

X/Open, an industry consortium, was formed in 1984 to try to create a

standard source-code environment so that programs could be compiled on
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any Unix system without change.

AT&T and some allies formed their own group, Unix International, to

promulgate their standard, in competition with a different standard from a

group called the Open Software Foundation. The result? Two competing

and different “open” standards. Eventually peace broke out, with a standard

called POSIX (Portable Operating System Interface) for basic library func-

tions, and a “Single Unix Specification” administered by X/Open that

between them standardized libraries, system calls, and a large number of

common commands (including the shell, Awk, ed, and vi ).

In 1992, USL and AT&T sued Berkeley over intellectual property rights

in Unix, claiming that Berkeley was using AT&T code without permission.

Berkeley had made many changes in the AT&T code, and added much valu-

able material of their own, including the TCP/IP code that made the Internet

accessible.

Berkeley continued to remove and rewrite code that had come from

AT&T, and in 1991 released a version of Unix that they felt contained none

of AT&T’s proprietary material. AT&T and USL were not convinced, how-

ev er, and this led to the lawsuit. After much maneuvering the case was heard

in a New Jersey court, where Berkeley prevailed, in part on the grounds that

AT&T had failed to put proper copyright notices on the code that it had dis-

tributed. Counter-suits ensued.

If this all sounds terminally complicated and boring, you’re right, but it

was a big deal at the time, with much waste of time and money on all sides.

In 1991, AT&T sold shares in USL to 11 companies, and in 1993 Novell

bought the rights to USL and Unix. Novell’s CEO, Ray Noorda, decided to

settle any remaining legal cases, perhaps realizing that the parties involved

were spending more money on lawyers than they could possibly ever recoup

in sales.

In retrospect, I suppose one could say that all the legal wrangling was a

by-product of AT&T’s early and almost accidental decision to make Unix

available to universities. As Unix spread from universities using it for free to

companies that were willing to pay for it, it became commercially viable, at

least potentially. But it was too late for effective protection. Even if AT&T’s

source code was restricted, the system call interface was in effect in the pub-

lic domain, and there was so much expertise in the community that creating

versions unencumbered by AT&T licenses was almost routine. The same

was true of application software like compilers, editors, and all the tools. To

mix several metaphors, AT&T was trying to lock the barn door after the

crown jewels had flown the coop.
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8.3 Minix and Linux

AT&T’s licensing of Unix became more and more restrictive as the com-

pany tried to make money from the software. This included restrictions on

how Unix could be used in universities, which gav e an advantage to BSD,

which had no such constraints. At the same time, the ongoing wars between

AT&T and BSD encouraged others to try rolling their own Unix-like sys-

tems. Independently created versions were free of commercial restrictions,

since they used only the system call interface, but no one else’s code.

At the Free University in Amsterdam in 1987, Andy Tanenbaum created

Minix, a Unix lookalike that was compatible at the system call level but writ-

ten entirely from scratch with a different kernel organization.

Minix was comparatively small, and to help with its spread, Andy wrote a

textbook on it that metaphorically was a parallel to the Lions book of a

decade earlier. Minix source code was available for free—one edition of the

book came with a set of about a dozen floppy disks that could be loaded onto

an IBM PC to provide a running system. I still have the first edition of

Andy’s book, and I might even hav e my Minix floppies as well.

Minix is alive and well today, a vehicle for education and for experiment-

ing with operating systems.

One other result of AT&T’s restrictive licensing, combined with the avail-

ability of Minix as a guide, was the independent development of another

Unix-like system, compatible at the system call level, by a 21-year-old

Finnish college student. On August 25, 1991, Linus Torvalds posted an item

on comp.os.minix, a Usenet news group, shown in Figure 8.3.

Linus did not predict the remarkable future of his hobby system, any more

than Ken and Dennis predicted the success of Unix. What started out as a

few thousand lines of code now stands at well over 20 million lines, with Tor-

valds (Figure 8.4) as the principal developer and coordinator of a worldwide

developer community maintaining and enhancing it. Torvalds is also the cre-

ator of Git, the most widely used version-control system for tracking code

changes in software systems, of course including Linux.

At this point, Linux is a commodity operating system that can run on any

kind of computer. It’s on literally billions of devices (all Android phones, for

example). It runs a substantial part of Internet infrastructure, including

servers for major operations like Google, Facebook, Amazon, and so on. It’s

inside many Internet of Things (IoT) devices—my car runs Linux, as does

my TV, your Alexa and Kindle, and your Nest thermostat. At the other end

of the computing horsepower spectrum, it’s the operating system on all of the

top 500 supercomputers in the world. It’s not a significant player in markets
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Hello everybody out there using minix -

I’m doing a (free) operating system (just a hobby, won’t be

big and professional like gnu) for 386(486) AT clones. This

has been brewing since april, and is starting to get ready.

I’d like any feedback on things people like/dislike in

minix, as my OS resembles it somewhat (same physical layout

of the file-system (due to practical reasons) among other

things).

I’ve currently ported bash(1.08) and gcc(1.40), and things

seem to work. This implies that I’ll get something

practical within a few months, and I’d like to know what

features most people would want. Any suggestions are

welcome, but I won’t promise I’ll implement them :-)

Linus (torv...@kruuna.helsinki.fi)

PS. Yes - it’s free of any minix code, and it has a

multi-threaded fs. It is NOT protable (uses 386 task

switching etc), and it probably never will support anything

other than AT-harddisks, as that’s all I have :-(.

Figure 8.3: Linus Torvald’s announcement of Linux, August 1991

like laptop and desktop computers, however; there the majority run Windows,

followed by macOS.

As a modern aside, the issue of whether it’s possible to copyright a pro-

gramming interface like the C standard library or the system calls for an

operating system is now the center of an apparently endless lawsuit between

Oracle and Google. Oracle acquired Sun Microsystems in 2010 and thus

became the owner of the Java programming language. Later that year, it sued

Google, claiming that Google was using Oracle’s copyrighted Java interface

in Android phones without permission, along with some patent claims.

Google won this case, with the judge ruling that the patent claims were

invalid and the Java API (application programming interface) could not be

copyrighted.

Oracle appealed, and eventually a new trial was held. Google won again,

but Oracle filed another appeal and this time the appeals court ruled for Ora-

cle. Google appealed to the Supreme Court for the right to present the case

there, in the hope of resolving the issue of whether APIs (not implementa-

tions!) could be copyrighted and thus used to prevent other parties from using

an interface specification to create lookalike systems.
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Figure 8.4: Linus Torvalds in 2014 (Wikipedia)

Disclosure: I’ve signed on to a couple of amicus briefs on the Google side

here, since I do not believe that APIs should be copyrightable. If they were,

we would not have had any of the Unix lookalikes, including Linux, since

they are based on independent implementation of the Unix system call inter-

face. We would probably also not have packages like Cygwin, a Windows

implementation of Unix utilities that provides a Unix-like commandline

interface for Windows users. Indeed, we would not likely have many inde-

pendent implementations of interfaces for anything if they could be restricted

by companies that claimed ownership.

At the time I’m writing this, the Supreme Court has not decided whether

to hear the case. We shall see, since once the Court decides, that’s it, short of

Congress changing the law in a clear fashion. And of course who knows

what might happen in other countries.

8.4 Plan 9

By the mid to late 1980’s, Unix research in 1127 was slowing. The 7th

edition, which was widely distributed and formed the base for most external

versions, had been released in 1979. The 8th edition appeared six years later

in 1985, the 9th in 1986, and the 10th, the final research version, was com-

pleted in 1989, though it was not distributed externally.
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The perception was that Unix was a mature commercial system, and no

longer a suitable vehicle for research in operating systems. A small group—

Ken Thompson, Rob Pike, Dave Presotto and Howard Trickey—gathered

together to work on a new operating system, which they called Plan 9 from

Bell Labs after the 1959 science-fiction movie Plan 9 from Outer Space.

(Plan 9 the movie had gained a reputation as the worst movie ever made—a

tough competition, to be sure—though some movie fans felt that it was so

bad that it was actually good in a perverse way.)

Plan 9 the operating system was in part an attempt to take the good ideas

in Unix and push them further. For example, in Unix, devices were files in

the file system. In Plan 9, many more data sources and sinks were files as

well, including processes, network connections, window-system screens and

shell environments. Plan 9 also aimed for portability right from the begin-

ning, with a single source that could be compiled for any supported architec-

ture. Another outstanding feature of Plan 9 was its support for distributed

systems. Processes and files on unrelated systems with different architec-

tures could work together exactly as if they were in the same system.

Plan 9 was made available to universities in 1992, and released publicly a

few years later for commercial use, but aside from a small community of afi-

cionados, it is not used much today. The major reason is probably that Unix

and increasingly Linux simply had too much momentum and there wasn’t a

compelling reason for most people to switch systems. A smaller part of the

reason it didn’t catch on may be that it took a rather Procrustean view. Plan 9

mechanisms were in many cases better than the Unix equivalents, and there

wasn’t much attempt to provide compatibility. For example, Plan 9 origi-

nally did not provide the C standard I/O library stdio, instead using a new

library called bio. Bio was cleaner and more regular than stdio, but without

the standard library, it took real work to convert programs to run on both

Unix and Plan 9. Similarly, there was a new version of Make called Mk,

which was superior in many ways, but it was incompatible and so existing

makefiles had to be rewritten.

There were mechanisms for conversion, and Howard Trickey (Figure 8.5)

ported a number of key libraries like stdio, but in spite of that, at least for

some potential users, including me, it was too much effort. Thus Plan 9 was

unable to profit directly from a lot of good Unix software, and it was harder

to export its software innovations to the mainstream Unix world.

Plan 9 did contribute one thing of surpassing importance to the world,

however: the UTF-8 encoding of Unicode.

Unicode is an ongoing effort to provide a single standard encoding of all

the myriad characters that mankind has ever used for writing. That includes
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Figure 8.5: Howard Trickey, ∼1981 (Courtesy of Gerard Holzmann)

alphabetic scripts like those in most Western languages, but also ideographic

scripts like Chinese, ancient scripts like Cuneiform, special characters and

symbols of all types, and recent inventions like emojis. Unicode has nearly

140,000 characters at the moment, and the count increases slowly but

steadily.

Unicode was originally a 16-bit character set, big enough to hold all

alphabetic scripts and the roughly 30,000 characters of Chinese and

Japanese. But it was not feasible to convert the world to a 16-bit character

set when most computer text was in ASCII, a 7-bit set.

Ken Thompson and Rob Pike wrestled with this issue for Plan 9, since

they had decided that Plan 9 would use Unicode throughout, not ASCII. In

September 1992, they came up with UTF-8, a clever variable-length encod-

ing of Unicode. UTF-8 is efficient in both space and processing time. It rep-

resents each ASCII character as a single byte, and uses only two or three

bytes for most other characters, with a maximum of four bytes. The encod-

ing is compact, and ASCII is legal UTF-8. UTF-8 can be decoded as it is

read, since no legal character is a prefix of any other character, nor is any

character part of any other character or sequence of characters. Almost all

text on the Internet today is encoded in UTF-8; it is used everywhere by

ev eryone.
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8.5 Diaspora

In 1996, AT&T split itself again, this time voluntarily and into three parts,

a process that called for a new word: “trivestiture.” One part remained

AT&T, focusing on long distance telephony and communications. A second

part became Lucent Technologies, which was in effect the follow-on to West-

ern Electric, focused on manufacturing telecom equipment. (One of the com-

pany’s slogans was “We make the things that make communications work.”)

The third fission product came from undoing the ill-judged acquisition of

NCR in 1991 when AT&T was trying to enter the computer business.

Bell Labs employees at the time were largely skeptical of trivestiture. The

hype that came with the new company name and logo was met with some

scorn. Figure 8.6 shows the flaming red Lucent logo that was announced

with much fanfare in 1996; I can’t repeat most of the names that were soon

attached to it. Figure 8.7 is an on-point Dilbert cartoon that appeared soon

afterwards.

Figure 8.6: Lucent Technologies logo

Figure 8.7: Dilbert’s take on the Lucent logo? DILBERT © 1996 Scott Adams. Used by

permission of ANDREWS MCMEEL SYNDICATION. All rights reserved.

Triv estiture split Bell Labs Research itself along functional lines, with

roughly one third of the research staff going to AT&T to form AT&T Labs
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(now AT&T Shannon Labs), and the rest remaining “Bell Labs” as part of

Lucent. For the most part, people went where they were told, but the mem-

bers of 1127, with a long history of pushing back against management edicts,

strongly resented the forced split-up of the Center. We took a hard line, and

management reluctantly agreed to let everyone make their own choice. In a

stressful real-time process, each person decided whether to go with AT&T or

stay with Lucent. In the end, this achieved the same roughly one-third / two-

thirds split that had been planned, but individuals had control over their own

destinies, at least in the short run.

All parties ultimately fell on hard times. AT&T was eventually bought by

Southwestern Bell (now SBC Communications), one of the original Baby

Bells. SBC rebranded itself with the AT&T name, logo and even the stock

ticker symbol “ T ”  that had been used as early as 1901.

Lucent went through a boom and then a bust, with some questionable

business practices en route. As it struggled to survive, it spun off its enter-

prise communications services business into a company called Avaya in

2000, and its integrated-circuit business into another called Agere in 2002.

Each split removed more people from Bell Labs, narrowing the breadth of

research activities and of course shrinking the financial base that could sup-

port long-term work. Agere was eventually absorbed into LSI Logic; after

some significant ups and downs, including bankruptcy, Avaya is still in busi-

ness as an independent company.

In 2006 Lucent merged with the French telecom company Alcatel to form

Alcatel-Lucent, which in turn was taken over by Nokia in 2016. Bell Labs

was swept up in this wav e of mergers and takeovers, but along the way, most

of those who had been involved with Unix and Center 1127 dispersed to

other places. The number 1127 itself disappeared in a reorganization in

2005.

Gerard Holzmann maintains a list of the alumni of Center 1127 and where

they are, at www.spinroot.com/gerard/1127_alumni.html. All too many hav e

died, but of those still alive, the most common destination has been Google;

others are at other companies, teaching, or retired. Only a tiny handful

remain at Bell Labs.
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Legacy

“Unix was not only an improvement on its predecessors but also on most

of its successors.”

Doug McIlroy, Remarks for Japan Prize award ceremony

for Dennis Ritchie, May 2011, paraphrasing Tony Hoare on Algol

Unix has been tremendously successful. As Unix or Linux or macOS or

other variants, it runs on billions of computers, serves billions of people con-

tinuously, and has of course made billions of dollars for any number of peo-

ple who have built on top of it (though not for any of its creators). Later

operating system have been strongly shaped by its decisions.

Languages and tools originally developed at Bell Labs for Unix are every-

where. Among the programming languages are C and C++, which are still

the backbone of system programming today and more specialized ones like

Awk and AMPL. Core tools include the shell, diff, grep, Make and Yacc.

GNU (a recursive acronym for “GNU’s not Unix”) is a large collection of

software, much based on Unix models, that is freely available in source-code

form for anyone to use: it makes almost everything from Unix available,

along with much more. Coupled with the Linux operating system, GNU

amounts to a free version of Unix. GNU implementations of Unix com-

mands are open source, so they can be used and extended, subject only to the

restriction that if the improvements are distributed, they hav e to be made

available to everyone for free; they can’t be taken private. A huge amount of

today’s software development is based on open source and in many cases

GNU implementations.

What accounts for the success of Unix? Are there ideas or lessons that

can be learned and applied in other settings? I think that the answer is yes,

on at least two fronts: technical for sure, and organizational as well.
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9.1 Technical

The important technical ideas from Unix have been discussed in the first

few chapters of the book; this section is a brief summary. Not everything

here originated with Unix, of course; part of the genius of Ken Thompson

and Dennis Ritchie was their tasteful selection of existing good ideas, and

their ability to see a general concept or a unifying theme that simplified soft-

ware systems. People sometimes talk of software productivity in terms of the

number of lines of code written; in the Unix world, productivity was often

measured by the number of special cases or lines of code that were removed.

The hierarchical file system was a major simplification of existing prac-

tice, though in hindsight it seems utterly obvious—what else would you

want? Rather than different types of files with properties managed by the

operating system, and arbitrary limits on the depth to which files could be

nested in directories, the Unix file system provides a straightforward view:

starting from the root directory, each directory contains either information

about files, or directories that contain information about further files and

directories. Filenames are simply the path from the root, with components

separated by slashes.

Files contain uninterpreted bytes; the system itself does not care what the

bytes are, or know anything about their meaning.

Files are created, read, written and removed with half a dozen straightfor-

ward system calls. A handful of bits define access controls that are adequate

for most purposes. Entire storage devices like removable disks can be

mounted on a file system so that logically the contents become part of the file

system at that point.

Naturally, there are some irregularities. Devices appear in the file system,

which is a simplification, but operations on them, especially terminals, have

special cases and an interface that remains messy even today.

What I’ve described here is the logical structure of the file system. There

are plenty of ways to implement this model, and in fact modern systems sup-

port a wide variety of implementations, all presenting the same interface but

with different code and internal data structures to make it work. If you look

at your computer, you will see multiple devices that use this model: the hard

drive, USB thumb drives, SD cards, cameras, phones, and so on. The bril-

liance of Unix was in choosing an abstraction that was general enough to be

remarkably useful, yet not too costly in performance.

A high-level implementation language, for user programs of course, but

also for the operating system itself. The idea was not new; it had been tried
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in Multics and a couple of earlier systems, but the time and the languages

were not quite ready. C was much more suitable than its predecessors, and it

led to portability of the operating system. Where once there were only pro-

prietary operating systems from hardware manufacturers, often with their

own proprietary languages, Unix became an open and widely understood

standard and then a commodity: the system could be used on all computers

with only minor changes. Customers were no longer locked in to specific

hardware, and manufacturers no longer had to develop their own operating

systems or languages.

The user-level programmable shell, with control-flow statements and easy

I/O redirection, made it possible to program by using programs as building

blocks. As the shell’s programming capabilities grew, it became another

high-level language in the programmer’s toolbox. And because it was a user-

level program, not part of the operating system, it could be improved on and

replaced by anyone with a better idea. The evolution from the original Unix

shell through PWB, the Bourne shell and Bill Joy’s csh to today’s prolifera-

tion illustrates the benefits, and of course some of the drawbacks—it’s all too

easy for incompatible versions to multiply.

Pipes are the quintessential Unix invention, an elegant and efficient way

to use temporary connections of programs. The notion of streaming data

through a sequence of processing steps is natural and intuitive, the syntax is

exceptionally simple, and the pipe mechanism fits perfectly with the collec-

tion of small tools. Pipes do not solve all connection problems, of course,

but the fully general non-linear connections of Doug McIlroy’s original con-

cept do not show up often in practice; linear pipelines are almost always good

enough.

The notion of programs as tools and using them in composition is charac-

teristic of Unix. Writing small programs that each do one thing well, rather

than large and monolithic programs that try to do many things, has many

benefits. Certainly there are times when monoliths make sense, but there are

strong advantages to a collection of small(ish) programs that ordinary users

can combine in novel ways.

In effect, this approach is modularization at the level of whole programs,

parallel to modularization at the level of functions within a program. In both

cases, the approach amounts to a kind of divide and conquer, since the indi-

vidual components are smaller and don’t interact with each other. It also per-

mits a mix-and-match functionality that is hard to achieve with big programs

that try to do too many different things in a single package.
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Ordinary text is the standard data format. The pervasive use of text turns

out to be a great simplification. Programs read bytes, and if they are intended

to process text, those bytes will be in a standard representation, generally

lines of varying length, each terminated with a newline character. That

doesn’t work for everything, but pretty much anything can use that represen-

tation with little penalty in space or time. As a result, all those small tools

can work on any data, individually or in combination.

It’s interesting to speculate about how differently things might have

turned out if Unix had been developed in a world with punch cards instead of

Teletypes. Punch cards practically force a world-view that everything comes

in 80-character chunks, with information most often located in fixed fields

within the chunks.

Programs that write programs is a powerful idea. Much of the progress

that we have made in computing has been through mechanization—getting

the computer to do more of the work for us. It’s hard to write programs by

hand, so if you can get a program to write them for you, it’s a big win. It’s

way easier, and the generated programs are more likely to be correct.

Compilers are of course an old example, but at a higher level, Yacc and

Lex are excellent examples of generating code to create programming lan-

guages. Tools for automation and mechanization, like shell scripts and make-

files, are in effect programs that create programs. These tools are still widely

used today, sometimes in the form of very large configuration scripts and

makefile generators that accompany the source code distributions of lan-

guages like Python and compilers like GCC.

Specialized languages, today often called little languages, domain-spe-

cific languages, or application-specific languages. We tell computers what to

do by using languages. For most programmers, that means general-purpose

languages like C, but there are a host of more specialized languages that

focus on narrower domains.

The shell is a good example: it’s meant for running programs, and it’s

very good at that, but you would not want to use it to write a browser or a

video game. Specialization is an old idea, of course; the earliest high-level

languages aimed at specific targets, for instance Fortran at scientific and engi-

neering computation, and Cobol at business data processing. Languages that

tried too early for too broad a range of applicability have sometimes

foundered; PL/I is an instance.

Unix has a long tradition of special-purpose languages, well beyond the

shell. The document preparation tools that are close to my heart are good

examples, but so are calculators, circuit design languages, scripting
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languages, and the ubiquitous regular expressions. One of the reasons there

were so many languages is the development of tools that enabled non-experts

to create them. Yacc and Lex are the primary examples here, and they are

specialized languages in their own right.

Of course, not all languages need to be high-tech to be useful. Steve

Johnson built the first version of the at command in an evening:

“Unix had a way of scheduling jobs to be run ‘out of hours’ so that

long jobs wouldn’t interfere with peoples’ work (remember, there were

a dozen or so people sharing the Unix machine). To cause a job to run

later, you needed to edit a system file and fill in a table of information

in a rather obscure format. I was attempting this feat one day and

heard myself muttering ‘I want this job to run at 2AM.’ Suddenly, I

realized that the information about what to do could be captured in a

simple syntax: ‘at 2AM run_this_command.’ I hacked together a ver-

sion in a couple of hours and advertised it in the ‘message of the day’

file the next morning.”

The at command is still used 40-plus years later, with not many changes.

Like a number of other languages, the syntax is a sort of stylized English

based on how we say things aloud.

The Unix philosophy, a style of programming, of how to approach a com-

puting task, was summarized by Doug McIlroy in his foreword to the special

issue of the Bell Labs Technical Journal on Unix, in July 1978:

(i) Make each program do one thing well. To do a new job, build

afresh rather than complicate old programs by adding new “features.”

(ii) Expect the output of every program to become the input to another,

as yet unknown, program. Don’t clutter output with extraneous infor-

mation. Avoid stringently columnar or binary input formats. Don’t

insist on interactive input.

(iii) Design and build software, even operating systems, to be tried

early, ideally within weeks. Don’t hesitate to throw away the clumsy

parts and rebuild them.

(iv) Use tools in preference to unskilled help to lighten a programming

task, even if you have to detour to build the tools and expect to throw

some of them out after you’ve finished using them.

These are maxims to program by, though not always observed. One

example: the cat command that I mentioned in Chapter 3. That command



170 CHAPTER 9: LEGACY

did one thing, copy input files or the standard input to the standard output.

Today the GNU version of cat has (and I am not making this up) 12

options, for tasks like numbering lines, displaying non-printing characters,

and removing duplicate blank lines. All of those are easily handled with

existing programs; none has anything to do with the core task of copying

bytes, and it seems counter-productive to complicate a fundamental tool.

The Unix philosophy certainly doesn’t solve all the problems of program-

ming, but it does provide a useful guide for approaching system design and

implementation.

9.2 Organization

I believe that another large component of the success of Unix was due to

non-technical factors, like the managerial and organizational structure of Bell

Labs, the social environment of 1127, and the flow of ideas across a group of

talented people working on diverse problems in a collegial environment.

These are harder to assess than technical notions, so this is necessarily a

more subjective view. As with the previous section, most of these have been

mentioned earlier.

A stable environment is crucial: money, resources, mission, structure,

management, culture—all should be consistent and predictable. As described

in Chapter 1, Bell Labs research was a large operation inside a large develop-

ment organization within a large corporation with a long history and a clear

mission: universal service. The long-term Bell Labs goal of continuously

improving telephone service meant that researchers could explore ideas that

they thought were important, for long periods, even years, without having to

justify their efforts every few months. There was oversight, of course, and

anyone who worked on a project for several years without producing any-

thing would be encouraged to change something. Occasionally, someone

was eased out of research or out of the company entirely, but in my 15 years

in management, I remember only a handful of cases.

Funding was assured, and working-level researchers did not have to think

about money, nor did it concern me even when I was a department head.

Certainly at some level someone did worry about such matters, but not the

people doing the research. There were no research proposals, no quarterly

progress reports, and no need to seek management approval before working

on something. Somewhere into my time as department head, I did start to

have to generate semi-annual reports on activities in my department, and for

that I solicited a paragraph from each person. These were gathered for infor-

mation only, howev er, not for evaluating performance. There were
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occasional periods when travel was scrutinized more carefully—we might be

limited to one or two conferences a year, perhaps—but for the most part, if

we needed to buy equipment or make a trip, money was available without

much question.

Problem-rich environment. As Dick Hamming said, if you don’t work on

important problems, it’s unlikely that you’ll do important work. But almost

any topic had the potential to be important and relevant to AT&T’s communi-

cations mission. Computer science was a new field, with plenty of ideas to

explore on both theoretical and practical fronts, and of course the interplay

between theory and practice was particularly fruitful. Language tools and

regular expressions are good examples.

Within AT&T, the use of computers was exploding, and Unix was a big

part of that, especially in systems for operations support, as seen with the

Programmer’s Workbench. The mainline telephone business was changing

too, as electro-mechanical telephone switches gav e way to computer-con-

trolled electronic switching. Again, this was a source of interesting data and

projects to work on, and often to contribute as well. One downside: most of

the switching work was done at very large development divisions in Indian

Hill (Napierville, Illinois), so collaboration often required trips to Chicago.

Distance is hard to overcome, and is still an issue today. Even with excellent

video conferencing, there is no substitute for having your collaborators next

door and your stable of experts nearby.

Bell Labs scientists were also expected to be part of the academic

research community, another source of research problems and insights, and

to keep up with what was going on in other industrial research labs like

Xerox PARC and IBM Watson. We attended the same conferences, pub-

lished in the same journals, and often collaborated with academic colleagues,

with sabbaticals in both directions. For example, I spent the fall of 1996

teaching at Harvard, with the full support of Bell Labs; they even paid my

salary, so Harvard got a freebie. The same was true in the academic year

1999-2000 at Princeton.

In addition to internal courses, any number of colleagues taught at univer-

sities. It was easily arranged for nearby schools like Princeton, NYU,

Columbia and West Point, and not much harder for extended visits to places

further away: Ken Thompson spent a year at Berkeley, Rob Pike spent a year

in Australia, Doug McIlroy spent a year at Oxford. External visibility was

important for recruiting as well as for generally keeping up with the field.

Secretive companies had a harder time attracting talent, something that

appears to still be true today.
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Hire the best. One resource was very carefully managed: hiring. In 1127,

we typically could only hire one or two people a year, and almost always

young ones, so hiring decisions were made very cautiously, perhaps too

much so. This is of course a familiar problem in university departments as

well. It is often unclear whether to go after a star in a particular field, or

someone else who is broadly talented; as Steve Johnson once put it, should

we be hiring athletes or first basemen? My preference has been for people

who are really good at what they do, without worrying too much about

specifically what it is.

In any case, Bell Labs worked hard to try to attract good people.

Recruiters from Research visited major computer science departments once

or twice a year, looking at PhD candidates. When someone promising was

identified, he or she was invited to visit for a couple of days, and would nor-

mally be interviewed by several groups, not just 1127. The programs like

GRPW and CRFP, for women and minorities, that I mentioned in Chapter 1

were a big help here as well, since they provided first-rate candidates for per-

manent employment who had already spent significant time with us during

their graduate school years.

We used our own researchers as recruiters, not professional career

recruiters. Someone doing active research of their own could have technical

conversations with faculty and students, would always learn something use-

ful, and could leave a positive impression of the company.

Relationships with universities tended to be long term. I was the recruiter

for Carnegie-Mellon in Pittsburgh for at least 15 years. Twice a year I would

spend several days at CMU, talking with computer science faculty about their

research and with students who might be interested in working at Bell Labs.

I made good friends in this way even if they didn’t join the Labs. Recruiting

was very competitive, since good universities were hiring actively, as were

top industrial research labs, so my personal list of the ones who got away is

long. I was certainly right to want to recruit most of them; they’ve been a

highly successful group.

Technical management. Managers have to understand the work they man-

age. Management in Bell Labs research was technical all the way to the top,

so they had a solid understanding of the work both within their own organiza-

tions and across others. Department heads were expected to know what their

people were doing in real detail, not for the purpose of arguing how great it

was, but for being able to explain it to others and helping to make connec-

tions. At least in 1127 there were no turf wars; it was a cooperative and non-

competitive environment where management supported their people, often

collaborated, and never competed. I’m not sure that this was a universal
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experience, but it’s worth aiming for, and doing it well should be part of the

reward mechanism for managers.

Although Bell Labs management was technically knowledgeable at all

levels, AT&T’s upper management seemed removed from new technology

and slow to adapt to change. For instance, in the early 1990s, Sandy Fraser,

at that time the director of 1127, told AT&T executives that networking

improvements would mean that long distance prices would come down from

their then-current ten cents per minute to one cent a minute, and he was

laughed at. Today’s price is pretty close to zero cents per minute; Sandy was

too conservative.

Cooperative environment. The size and scale of Bell Labs meant that for

almost any technical area, there were multiple experts, often world leaders in

their field. Furthermore the culture was strongly cooperative and helpful. It

was absolutely standard procedure to walk into someone’s office and ask for

help; most often the person being asked would drop everything to assist.

There was also a superb technical library, open 24 hours a day, with subscrip-

tions to a large collection of journals, and remote access to other libraries; it

was equivalent to a university library but focused on science and technology.

For many people in 1127, the closest collection of relevant experts was

the Mathematics Research Center, 1121, which had extraordinary mathemati-

cians, including Ron Graham, Mike Garey, David Johnson, Neil Sloane,

Peter Shor, Andrew Odlyzko—the list just goes on. John Tukey, arguably the

world’s foremost statistician at the time (and incidentally the person who

coined the word “bit”), was just across the hall, and there were formidable

experts on pretty much any aspect of mathematics and communications. For

instance, my current Princeton colleague Bob Tarjan, who shared the Turing

Aw ard in 1986, was in the math center.

They were always ready to help, and not always just on technical matters.

For example, in addition to being an outstanding mathematician, Ron Gra-

ham was an expert juggler and a former president of the International Jug-

glers’ Association; he even had a net in his office to catch dropped juggling

balls before they hit the floor. Ron used to say that he could teach anyone to

juggle in 20 minutes. I fear that it wasn’t true in my case, but an hour of one-

on-one instruction (in his office!) did get me over the hump, and I still have

the lacrosse balls that he gav e me to practice with.

Fun. It’s important to enjoy your work and the colleagues that you work

with. 1127 was almost always a fun place to be, not just for the work, but the

esprit of being part of a remarkable group. Since there were no local options

other than the company cafeteria, lunchtime provided a mix of social and
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technical discussions. While the Unix room crowd normally ate at 1PM, a

larger group routinely ate at 11AM. Topics included everything from techni-

cal ideas both big and small to politics with no holds barred; these would

often be continued during a walk around the Bell Labs property.

Center members played pranks on each other, and took perhaps undue

pleasure from pushing back against the bureaucracy that’s inevitable in any

big company. I’v e already mentioned disdain for badges. The various forms

and procedures that we were supposed to use provided further opportunities.

For example, security staff would ticket cars that were violating some or

other rule. One spring day, Mike Lesk found a blank ticket, which he put on

the windshield of a colleague’s car with the violation listed as “Failure to

remove ski-rack by April 1.” The colleague, not to be identified here, was

actually taken in by this for a few hours.

By far the most elaborate prank was played on Arno Penzias by a team of

at least a dozen, led by Rob Pike and Dennis Ritchie, with the aid of profes-

sional magicians Penn and Teller. It’s too long for the book, but Dennis tells

the Labscam story at www.bell-labs.com/usr/dmr/www/labscam.html, and the

video is at www.youtube.com/watch?v=if9YpJZacGI. I’m in the credits at the

end as a gaffer, which is accurate—much duct tape was involved.

There was no free food at Bell Labs (that’s a modern perk that I would

have appreciated back in the day), but somehow we managed free coffee;

management quietly paid for it.

People would leave offerings in the Unix room for the common good.

Someone found a supply of 10 kg (22 lb) blocks of high-quality chocolate

and left them for people to chip away at it. The food wasn’t always up to that

standard, however:

“Somebody brought in a bag of objects labeled in Chinese. All of us

bit into one of them and gav e up. We then noticed that they were dis-

appearing: it turned out that [redacted] was eating them. Near the end

of the bag somebody who knew Chinese told us that the instructions

on the bag said to soak for an hour in boiling water before eating.”

At the same time, there was zero, or even neg ative, enthusiasm for the

kinds of team-building exercises that one often sees today. Most of us saw

them as artificial, pointless, and a waste of time.

It takes effort to build and maintain an organization whose members like

and respect each other, and who enjoy each other’s company. This can’t be

created by management fiat, nor by external consultants; it grows organically

from the enjoyment of working together, sometimes playing together, and

appreciating what others do well.
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9.3 Recognition

Unix and its primary creators, Ken Thompson and Dennis Ritchie, have

been recognized for their contributions. When they won the ACM Turing

Aw ard in 1983, the award selection committee said

“The success of the Unix system stems from its tasteful selection of a

few key ideas and their elegant implementation. The model of the

Unix system has led a generation of software designers to new ways of

thinking about programming. The genius of the Unix system is its

framework, which enables programmers to stand on the work of oth-

ers.”

They also received the US National Medal of Technology in 1999. Figure

9.1 is a picture with President Bill Clinton, one of the few occasions where

either Ken or Dennis wore a suit and tie. Bell Labs was for us at least a very

informal environment by the standards of the time. As Dennis said in his

online biography, “Ken’s virtual coat-tails are long. I’m one of the few,

besides Bonnie T., who has seen him wear a real coat (and even black tie) on

more than one occasion.” I personally have nev er seen Ken dressed up at all.

Other awards include membership in the National Academy of Engineer-

ing, and the Japan Prize in Information and Communications in 2011, for

which the citation reads

“Compared to other operating systems prevailing around that time,

their new and advanced OS was simpler, faster and featured a user-

friendly hierarchical file system. Unix was developed in conjunction

with the programming language, C, which is still widely used for writ-

ing OS, and dramatically improved the readability and portability of

Unix source code. As a result, Unix has come to be used by various

systems such as embedded systems, personal computers, and super

computers.”

“Unix was also a major driving force behind the development of the

Internet. University of California, Berkeley dev eloped Berkeley Soft-

ware Distribution (BSD), an extended version of Unix that was imple-

mented with the Internet protocol suite TCP/IP. The development was

based on the sixth edition of Unix that Bell Labs distributed along with

its source code to universities and research institutions in 1975, which

led to the beginning of an ‘open source’ culture. BSD Unix helped the

realization of the Internet.”
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Figure 9.1: Ken, Dennis, Bill, National Medal of Technology, 1999

Other forms of recognition were more informal, signs that Unix and C

had entered popular culture, like the appearance of C on the popular TV pro-

gram Jeopardy:

From dmr@cs.bell-labs.com Tue Jan 7 02:25:44 2003

Subject: in case you didn’t see it

On Friday night on "Jeopardy!", in a category called

"Letter Perfect" (all the answers were single letters),

the $2,000 (most difficult) question was:

DEVELOPED IN THE EARLY 1970S, IT’S THE MAIN PROGRAMMING

LANGUAGE OF THE UNIX OPERATING SYSTEM.

and in some kind of high point for geeks, a famous scene in the 1993 movie

Jurassic Park, where the 13-year-old Lex Murphy (Ariana Richards) says

“It’s a Unix system! I know this.” She navigates the file system, finds the

controls for the doors, locks them, and thus saves everyone from being eaten

by velociraptors (Figure 9.2).

Other members of Center 1127, in part thanks to the rich environment

enabled by Unix, have also been recognized professionally, like the 8 other

1127 alumni who are members of the National Academy of Engineering.
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Figure 9.2: Unix in Jurassic Park

9.4 Could histor y repeat?

Could there be another Unix? Could a new operating system come out of

nowhere and take over the world in a few decades? I often get this question

when I talk about Unix. My answer is no, at least at the moment. There will

be no revolution; more likely, operating systems will continue to evolve,

while carrying a great deal of Unix DNA.

But some analogous success could happen in other areas of computing.

There are always creative people, good management is not unheard of, hard-

ware is very cheap, and great software is often free. On the other hand, there

are few unfettered environments, industrial research is much reduced and

constrained and far more short-term than it was fifty years ago, and academic

research is always strapped for funds.

Nevertheless, I am optimistic, on the grounds that the great ideas come

from individuals.

For example, the number of people contributing to Unix in the early days

was tiny; arguably the core was a single person, Ken Thompson, who is cer-

tainly the best programmer I have ever met, and an original thinker without

peer. Dennis Ritchie, whose name is linked with Ken as the co-creator of

Unix, was a vital contributor, and his C programming language, central to the
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ev olution of Unix in the early days, is still the lingua franca of computing.

It’s instructive to examine the languages that programmers use every day

and see how often they were originally the work of one or two people.

Almost every major programming language is like that, including Java

(James Gosling), C++ (Bjarne Stroustrup), Perl (Larry Wall), Python (Guido

von Rossum), and JavaScript (Brendan Eich). It seems safe to predict that

there will continue to be new languages to make programming easier and

safer. It’s also safe to predict that there won’t be just one language, how-

ev er—there are too many tradeoffs for a single language to serve all purposes

well enough.

Google, Facebook, Amazon, Twitter, Uber, and any number of other com-

panies that went from startups to multi-billion-dollar enterprises originated

with a bright idea by one or two people. There will be more of these, though

it’s also possible that as new ideas occur and new companies appear, they

will quickly be snapped up by the existing big companies. The bright ideas

may be preserved, and the inventors will be well compensated, but the big

fish are likely to eat the little ones quite quickly.

Good management is another component of success. Doug McIlroy

stands out here as unique, a leader of outstanding intellectual horsepower,

with incomparable technical judgment, and a management style based on

being one of the first users of whatever his colleagues developed. Unix itself,

but also languages like C and C++, and any number of Unix tools, all profited

from Doug’s good taste and razor-sharp critiques. So did Unix documenta-

tion of all sorts, from the user manuals through a few dozen influential books.

I can attest to this personally: Doug was the outside reader on my PhD thesis

in 1968, made incisive comments on all of my technical papers and books,

and is still keeping me on target more than 50 years later.

Bell Labs management was technically competent, and especially so in

1127, so it could assess good work, and it was hands-off, so it didn’t push

particular projects or approaches. In over 30 years at the Labs I was never

told what to work on. Bruce Hannay, vice president of Research after Bill

Baker, said in 1981 in Engineering and Science in the Bell System,

“Freedom of choice is of utmost importance to the research scientist,

because research is an exploration of the unknown and there are no

road maps to tell what course to take. Each discovery affects the

future course of research and no one can predict or schedule discovery.

Thus Bell Laboratories research managers have provided the maxi-

mum possible freedom to the research staff, consistent with the institu-

tional purpose. Research people have been chosen for their creative

abilities and are encouraged to exercise these to the fullest.”
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One of the best examples I ever saw of this nearly absolute freedom was

the work that Ken Thompson and Joe Condon did on their chess computer.

One day Bill Baker, president of Bell Labs, brought some or other distin-

guished visitor to the Unix room, and Ken showed off Belle. The visitor

asked why Bell Labs supported work on computer chess, since it didn’t seem

to have anything to do with telephones. Bill Baker answered: Belle was an

experiment in special-purpose computers, it had led to the development of

new circuit design and implementation tools, and it gav e Bell Labs visibility

in another field. Ken didn’t hav e to do any justification whatsoever.

The big secret to doing good research is to hire good people, make sure

there are interesting things for them to work on, take a long view, and then

get out of the way. It certainly wasn’t perfect, but Bell Labs research gener-

ally did this well.

Of course computing didn’t exist in a technological vacuum. The inven-

tion of the transistor and then integrated circuits meant that for 50 years com-

puting hardware kept getting smaller, faster, and cheaper at an exponential

rate. As hardware got better, software became easier, and our understanding

of how to create it got better as well. Unix rode the technology improvement

wave, as did many other systems.

As I said in the Preface, Unix was probably a singularity, a unique combi-

nation of circumstances that changed the computing world. I doubt that we

will see anything like it again in operating systems, but there will surely be

other occasions when a handful of talented people with good ideas and a sup-

portive environment do change the world with their inventions.

For me, Bell Labs and 1127 were a marvelous experience: a time and

place with endless possibilities and a group of first-rate colleagues who made

the most of them. Few are fortunate enough to have that kind of experience,

the shared creation, of course, but especially the friends and colleagues with

whom it was shared.

“What we wanted to preserve was not just a good environment in

which to do programming, but a system around which a fellowship

could form. We knew from experience that the essence of communal

computing [...] is not just to type programs into a terminal instead of a

keypunch, but to encourage close communication.”

Dennis Ritchie, “The Evolution of the Unix Time-sharing System,”

October 1984





Sources

“The names of Ritchie and Thompson may safely be assumed to be

attached to almost everything not otherwise attributed.”

“To look further afield would require a tome, not a report, and possibly a

more dispassionate scholar, not an intimate participant.”

Doug McIlroy, A Research Unix Reader: Annotated Excerpts

from the Programmer’s Manual, 1971-1986, 1986

Much Unix history is online (though not always in a searchable form),

thanks to some good luck and truly dedicated work by amateur and profes-

sional historians, such as The Unix Heritage Society and the Computer His-

tory Museum. Further material is available through interview videos and oral

histories; some are contemporaneous like the various AT&T public relations

efforts, and some are retrospective. This list of sources is in no way complete

or comprehensive, but it will give readers who want to dig further a good

start. Many of these documents can be found on the Internet.

A History of Science and Engineering in the Bell System has seven vol-

umes with nearly 5,000 pages written by members of technical staff at Bell

Labs, mostly in the 1970s and 1980s. One volume deals with the relatively

late advent of computing.

Bell Labs maintains a sequence of short pages on the history of Unix at

s3-us-west-2.amazonaws.com/belllabs-microsite-unixhistory.

A. Michael Noll, a member of the Speech and Acoustics Research Center

in the 1960s and early 1970s, has written a memoir of his time at the Labs,

along with material from his role as the editor of the papers of Bill Baker; it

can be found at noll.uscannenberg.org along with a variety of other informa-

tive historical information. It’s an excellent read for basic facts about the
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Labs and what it was like in the speech and acoustics research area. Mike’s

memories about the collegiality and openness of Bell Labs generally accord

with mine, though he feels things started to fall apart much sooner than I do,

perhaps because we were in different (though organizationally adjacent)

areas.

Tom Van Vleck maintains a thorough repository of historical information

about Multics at multicians.org.

The special issue of the Bell System Technical Journal on Unix in July

1978 has several fundamental papers, including an updated version of the

CACM paper, Ken’s “Unix Implementation,” Dennis’s “Retrospective,” a

paper by Steve Bourne on the shell, along with a paper on PWB by Ted

Dolotta, Dick Haight and John Mashey.

The special issue of the AT&T Bell Labs Technical Journal on Unix in

1984 includes Dennis Ritchie’s “Evolution of Unix” paper, and “Data

Abstraction in C” by Bjarne Stroustrup, among other interesting articles.

Doug McIlroy’s “A Research Unix Reader” is especially good for histori-

cal background; it can be found at genius.cat-v.org/doug-mcilroy.

The Unix Heritage Society, run by Warren Toomey with the help of many

volunteers, has preserved versions of early Unix code and documentation; it’s

a great place to browse. For example, www.tuhs.org/Archive/Distributions/

Research/Dennis_v1 has the code for the First Edition as provided by Dennis

Ritchie.

The late Michael Mahoney, professor of the History of Science at Prince-

ton University, interviewed a dozen members of 1127 in the summer and fall

of 1989 for an extensive oral history of Unix. Mike’s raw transcripts and

edited interviews are maintained by the History department at Princeton, and

can be found at www.princeton.edu/˜hos/Mahoney/unixhistory. In addition to

being a first-rate historian, Mike was a programmer who really understood

what his subjects were talking about, so there is often significant technical

depth.

Phyllis Fox, a pioneer of numerical computing and of technical women at

Bell Labs, did an oral history for the Society for Industrial and Applied

Mathematics (SIAM) in 2005, available at history.siam.org/oralhisto-

ries/fox.htm; it includes a detailed description of the PORT portable Fortran

libraries.

The May 2019 fireside chat with Ken Thompson at the Vintage Computer

Festival East is on YouTube at www.youtube.com/watch?v=EY6q5dv_B-o.

Tw o books on the early history of Unix are available for free download:

Life with Unix by Don Libes and Sandy Ressler (1989), and A Quarter Cen-

tury of Unix by Peter Salus (1994).
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Dennis Ritchie’s home page at (Nokia) Bell Labs has been preserved. It

has links to most of the papers that Dennis wrote and to other historical mate-

rial. The link is www.bell-labs.com/usr/dmr/www.

Kirk McKusick, one of the central figures in BSD, has written a careful

history of BSD, available at www.oreilly.com/openbook/opensources/book/

kirkmck.html. Ian Darwin and Geoff Collyer provide additional insights from

a somewhat different perspective in doc.cat-v.org/unix/unix-before-berkeley.
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