Wohnen für Jung und Alt Gemeinschaftliches Leben in Augsburg

Integrales Entwurfsprojekt

BEGLEITENDE BROSCHÜRE

Technische Hochschule Augsburg

Energieeffizientes Planen und Bauen

Wintersemester 24/25

Studentische Arbeit von: Neil Buffinton Tokan Bürger

> Betreuung: Prof. J. Müller Prof. S. Runkel

Einführung

Inhalt

27

Aufgabe

Einführung

Konzept	
Umfeldanalyse	4
Lärmkarte	5
Übersicht	
Schwerpunkte	6
Raumprogramm	7
Bauphysik	
Sommerlicher Wärmeschutz	8

12

	1

Heizwärme

Effizienzhausstandard

Erneuerbare Energien

auteilkatalog	
Bodenplatte	14
Kellerwand	15
Geschossdecke Wohnraum	16
Geschossdecke WC/ Flur	17
Flachdach EG	18
Flachdach 2. OG	19
Flachdach 4. OG	20
Außenwand	21
Wohnungstrennwand	22
Zimmertrennwand	23
Treppenhauswand	24
Brandwand	25
Anhang	
Entstehungsprozess	26

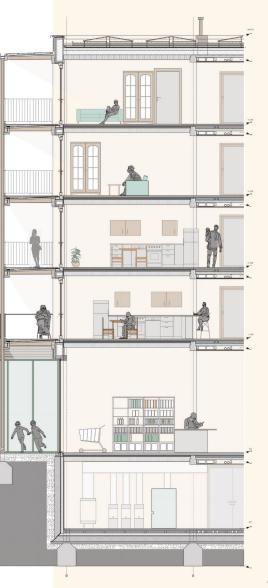
Recherche

Hintergrund

Vor Allem allein wohnende Menschen wünschen sich häufig ein durchmischtes und lebendiges Umfeld. Reine Senioren- oder Studierendenwohnheime können diesem Wunsch nicht entsprechen. Daher soll ein Wohnangebot geschaffen werden, das für alle Altersgruppen offensteht, dadurch einen Mehrwert bietet und eine Hausgemeinschaft entstehen lässt, die unterschiedlichste Lebenshintergründe zusammenbringt.

Ort

Das Grundstück ist am nordwestlichen Rand der Augsburger Altstadt situiert, das Quartier im Domviertel von den mittelalterlichen Straßenzügen und den nahen Grünflächen der ehemaligen Befestigungsanlagen geprägt. Die Lange Gasse selbst ist durch eine Mischung von giebelständigen und traufständigen Häusern unterschiedlichster Bauzeiten charakterisiert, die Straße folgt der relativ starken Topografie.


Raumprogramm

Im Zentrum steht das Wohnangebot: Es sollen sowohl Apartments für Einzelpersonen wie auch Wohnungen für 2-4 Personen vor allem in Wohngemeinschaften entstehen. Die jeweilige Mischung der Wohnungen kann entwurfsspezifisch selbst bestimmt werden. Alle Wohnungen sind barrierefrei zu gestalten, ein Teil der Wohnungen rollstuhlgerecht. Auf realistische und ökonomische Wohnungsgrößen ist dabei Wert zu legen.

Das Wohnungsangebot entsteht aus einem modular aufgebauten Bausystem, das flexibel ist und auf sich ändernde Rahmenbedingungen reagieren kann. In der Wohnungsgestaltung ist sowohl auf die Wahrung der Privatsphäre als auch auf ein sehr gutes räumliches Kommunikationsangebot auch in der Ausbildung des Erschließungssystems zu achten. Ein attraktiver und barrierefreier Zugang zu den Wohnungen und sonstigen Nutzungen ist schon in den ersten Entwurfsschritten zu bedenken.

Neben der Wohnnutzung ist ein von den Bewohnerinnen und Bewohnern selbst betriebener Lebensmittelladen ("Tante Emma", mit Anlieferung, Lager, WC, gesamt ca. 150-200 m²), ein Gemeinschafts- und Veranstaltungsraum mit Teeküche, Stuhllager und WC-Anlage (gesamt 100-150 m²) und ein Bewegungs- und Sportbereich (Tischtennis etc., keine Sanitäranlagen notwendig 100-150 m²) zu planen.

Die Feuerwehrzufahrt für die Turnhalle der im Hof angrenzenden Schule ist mit einer lichten Breite von 3,00 m und 3,50 m lichter Höhe freizuhalten.

Konzept

Umfeldanalyse

Lärmkarte

EINFLUSSFAKTOREN

Straßenlärm

Angrenzende Grünfläche

Feuerwehrzufahrt

Öffentlicher Durchgang

Nachbargebäude

-Höhe und Tiefe beachten

Geometrie

-Modulares Raster

Sonne und Tageslicht

-Gebäudetiefe

-Verschattung

Frischluftzufuhr

Geländeverlauf

Lärmbelastung

35-40 dB(A)

40-45 dB(A)

45-50 dB(A)

50-55 dB(A)

55-60 dB(A)

60-65 dB(A)

65-70 dB(A)

Schlussfolgerung

Gebäude öffnet sich nach SW und zeigt sich zur Straße geschlossen. Übersicht

Schwerpunkte

Raumprogramm

GEBÄUDEDATEN

Volumen extern (brutto)

8080,8 m³

Energiebezugsfläche A

2126,2 m²

Nettoraumfläche, NRF

2126,2 m²

Bebaute Fläche

670 m²

Gebäudehüllfläche

3044,3 m²

davon Fensterflächen

660,19 m²

A/Ve

0,38

Gebäudegrün und Außenflächen

Die Angrenzende Grünfläche und das abfallende Gelände haben schon zu Beginn diesen Entwurf geprägt. Schnell war klar, dass wir eine große Terrassenflächen und Außenbereiche auf unterschiedlichen Ebenen schaffen wollen, die sich nach Südwesten abstufen und schließlich mit einer Gartenfläche nach Südwesten öffnen.

Sortenreine und Recylingfähige Konstruktionen

Eine große Herausforderung war es Konstruktionen zu finden die den aktuellen Ansprüchen an eine zukünftige Rückbarkeit des Gebäudes und eine Wiederverwendung der Bauteile gerecht wird. Während sich die Anforderungen bei der Tragstruktur noch relativ einfach realisieren lassen, hat es deutlich mehr Aufwand gemacht die Fußbodenaufbauten oder die Bodenplatte zu konstuieren.

Natürliche Materialien

Die Verwendung baubiologischer, lokaler und CO2 - speichernder Materialien ist mittlerweile keine Neuheit mehr. An manchen Stellen stoßen diese Baustoffe hinsichtlich ihrer Leistungsfähigkeit und ihrer Widerstandsfähigkeit an Grenzen, z.B. bei der Verwendung von Holz für Kellerbauteile. Ob an dieser Stelle der aktuell neue "Carbonbeton" geholfen hätte, muss wohl Teil der nächsten Arbeit werden.

Sparsame Gebäudetechnik

Bei der Planung der durchaus aufwendigen Gebäudetechnik waren vor allem Energieeinsparung und Ressourcenverbrauch ausschlaggebend. Ob sie die Installation wirklich lohnt und wie schnell sich die graue Energie und die Investionskosten amortisieren um wirklich ökologisch und realistisch umsetzbar zu sein, war bisher kein Bestandteil diesr Planung,

Bezeichnung	Geschosshöhe [m]	Nettovolumen [m³]	Nettogrundfläche [m²]
UG	3	439,23	175,69
Keller	3	439,23	175,69
EG	4,5	2.221,53	555,38
Werkstatt	4,5	159,36	39,84
Treppenhaus	4,5	239,3	59,83
Laden	4,5	612,5	153,13
Gemeinschaft	4,5	530,06	132,52
Sport	4,5	600	150
Lager	4,5	80,31	20,08
OG 1	2,83	999,49	390,43
Wohnen	2,83	908,67	354,95
Treppenhaus	2,83	90,82	35,48
OG 2	2,83	982,66	383,85
Wohnen	2,83	891,84	348,38
Treppenhaus	2,83	90,82	35,48
OG 3	2,83	720,25	281,35
Wohnen	2,83	629,43	245,87
Treppenhaus	2,83	90,82	35,48
OG 4	3,16	720,26	281,35
Wohnen	3,26	720,26	281,35

WOHNEN 1230 m²

29 Zimmer in 7 Einheiten

GEMEINSCHAFT 323 m²

Räume für Sport, Hobby und Veranstaltungen

GEWERBE 173 m²

Ladenraum und Lager

ERSCHLIESSUNG 202m²

TECHNIK 50 m²

Bauphysik

Sommerlicher

Wärmeschutz

Bauphysik

UNTERSUCHTER RAUM

Kritischster Raum im Gebäude:

Gemeinschafts- und Seminarraum

PASSIVE KÜHLUNG

Über den Abwasserwärmetauscher gekühltes Wasser durch den Heizkreislauf pumpen

Raum: Raum 1

Klimaregion	Klimaregion B
Grundfläche A _G	132,5 m ²
Bauweise	mittel - 50 Wh/(m^2 K) $\leq C_{wirk}/A_G \leq 130$ Wh/(m^2 K)
Nachtlüftung	erhöhte Nachtlüftung mit n >= 2/h
Einsatz passiver Kühlung	ja

Fenster

N	r. Name	Gesamt- fläche	Aus- richtung	ver- schattet	Sonnenschutz	Fc	g- Wert
	pfosten riegel gemeinschaft IEP Außenwand SO	44,0 m ²	Südost	nein	Jalousie und Raffstore, drehbare Lamellen, 45° Lamellenstellung (außenliegend)	0,25	0,50
	2 pfosten riegel gemeinschaft - IEP Außenwand S	22,6 m ²	Süd	nein	Jalousie und Raffstore, drehbare Lamellen, 45° Lamellenstellung (außenliegend)	0,25	0,50

Sonneneintragskennwert: 0,063 Zulässig: 0,087

Die Mindestanforderungen an den sommerlichen Wärmeschutz sind erfüllt.

Bestimmung des zulässigen Höchstwertes des Sonneneintragskennwertes

Zeile		anteiliger Sonneneintragskennwert S _x
S ₁	Wohngebäude in Klimaregion B, erhöhte Nachtlüftung mit n >= 2/h, Bauart: mittel	0,103
S ₂	Wohngebäude: a = 0,060, b = 0,231	$a - b \cdot f_{WG} = -0,056$
S ₆	Einsatz passiver Kühlung bei mittlerer Bauart	0,04
Summe		$S_{zul} = \sum S_x = 0.087$

Hierbei ist $f_{WG} = A_W / A_G = 66,6 / 132,5 = 0,50$.

Detaillierte Ermittlung des Sonneneintragskennwertes

Fenster	A _w [m²]	g	F _C	$A_w \cdot g \cdot F_C [m^2]$
pfosten riegel gemeinschaft - IEP Außenwand SO	44,0	0,50	0,25	5,50
pfosten riegel gemeinschaft - IEP Außenwand S	22,6	0,50	0,25	2,82
Summe				8,33

Aus $S_{vorh} = \sum_{i} (A_{w,i} \cdot g_{total,i}) / A_G$ und $A_G = 132,5$ m² ergibt sich: $S_{vorh} = 8,33 / 132,5 = 0,063$.

THERMISCHE MASSE

Alle Wände im Gebäude sind mit schweren Lehmplatten verkleidet

Unverkleidete, massive Rohdecken und Trockenestrich dienen als zusätzlicher Speicher

KONSTRUKTIVE VERSCHATTUNG

Der Laubengang verschattet alle Fenster und Terrassentüren der Südseite ausreichend. Bauphysik

Heizwärme

Effizienzhausstandard

Obwohl im Programm eine Lüftungsanlage mit Wärmerückgewinnung angegeben ist, ist der Wert für "Wärmeeinträge durch Lüftungsanlage" = 0

-> Nicht plausibel

Auszüge aus der softwaregestützen Energiebilanzierung mit ZUB Helena. Es handelt sich um eine Vorberechnung ohne Anspruch auf Vollständigkeit der Daten.

Heizung	kWh/(m²a)	
Senken durch Transmission		36,4
Außenwandflächen	6,1	
Dachflächen und oberste Geschossdecke	5,0	
unterer Gebäudeabschluss	3,5	
Fenster	19,0	
Türen	0,0	
Wärmebrücken	2,9	
Senken durch Lüftung		25,1
Lüftungswärmesenken gegen Außenluft	25,1	
Wärmeeinträge durch Lüftungsanlage (Wärmerückgewinnung, Luftheizung)	0,0	
Wärmequellen		-51,5
Interne Quellen (gemäß Nutzungsprofil)	-19,1	
Ungeregelte Wärmeeinträge durch Anlagentechnik	-9,0	
Solare Quellen	-23,4	
Nutzwärmebedarf q _{h,b}		10,3
Senken der Anlagentechnik		-8,8
durch Übergabe	0,0	
durch Verteilung	1,0	
durch Speicherung	0,0	
durch Erzeugung	0,0	
regenerativer Anteil	-9,7	
Wärmeenergie ohne Hilfsenergie		1,5
Hilfsenergie		0,5
Endenergiebedarf Heizung (ohne Lüftungsanlage)		2,1

BEG-Ergebnisse

Ergebnisse	Ist-Wert	Soll-Wert	% vom Soll-Wert	
H _T ' bzgl. Referenzgebäude [W/(m²K)]	0,274	0,511	54 %	55 %
spezifischer Primärenergiebedarf [kWh/(m²a)]	9,3	71,8	13 %	40 %
Primärenergiebedarf [kWh/a]	19.285,4	149.106,2	13 %	40 %

Der Effizienzhausstandard "Effizienzhaus 40" (Neubau) wurde erreicht.

Endenergie, Primärenergie und Treibhausgasemissionen

	Endenergie	Primärenergie	Treibhausgas- emissionen
ohne Korrektur für regenerative Stromerzeugung	38.178 kWh/a		
Korrektur für regenerative Stromerzeugung	-17.926 kWh/a		
Gebäudeergebnis	20.252 kWh/a	19.285 kWh/a	6.381 kg/a
Einsparung gegenüber 0,55fachem Wert des GEG-Referenzgebäudes	60.851 kWh/a (–75 %)	62.723 kWh/a (–76 %)	

Erfüllung der EE-Klasse nach BEG - Übersicht

Maßnahme	Erzeuger	Regenerativer Anteil des Energieträgers	Durch Maßnahme gedeckter Anteil
Stromerzeugung aus erneuerbaren Energien	PV-Anlage		6,49 %
Wärmepumpe	Wärmepumpe	100,00 %	32,25 %
Wärmenetze	Nah-/Fernwärme 1	100,00 %	6,00 %
Kälte aus erneuerbaren Energien	Kühlsystem 1	100,00 %	27,61 %
Wärmerückgewinnung			20,54 %
Gesamt			92,89 %

Bauphysik

KFN FÖRDERUNG

Wird vergeben für Gebäude die den Effizienzhaus 40 Standard erreichen

-> erreicht

UND

Die das Qualitätssiegel QNG-PLUS erreichen. Anspruch u.a. 28kg CO² Äq./(m²a) über Lebenszeitraum

 -> Lebenszyklusanalyse noch nicht durchgeführt

Erneuerbare

Energien

Bauphysik

AUSBLICK

Eine Variantenanalyse wurde bisher nicht durchgeführt und würde sicherlich weiteres Einsparpotenzial eröffnen.

Eine Untersuchung mit der Software Berta und Rudi wäre spannend und könnte Teil des nächsten Projektes werden.

Erfüllung der EE-Klasse nach BEG - Detaillierte Darstellung

Berechnung des Wärmeenergiebedarfs des Gebäudes:

für Heizung (Q _{h,outg} + Q _{h*,outg})	61.584,3 kWh/a
für Trinkwarmwasser (Q _{w,outg})	45.863,5 kWh/a
für Kühlung und Befeuchtung (Q _{c,outg} + Q _{c*,outg} + Q _{m*,outg} + Q _{rc,outg})	40.973,3 kWh/a
gesamter Wärmeenergiebedarf Q _{outg, GEG}	148.421,1 kWh/a

Stromerzeugung aus erneuerbaren Energien: PV-Anlage

	Stromerzeugung	Elek	trische Endenergie [k	Wh]
Monat	[kWh]	Heizung	Warmwasser	Anrechenbar
Jan.	677	1.872	798	677
Feb.	907	1.526	721	907
März	2.230	735	796	1.531
Apr.	4.216	50	768	817
Mai	5.002	0	734	734
Juni	5.278	0	705	705
Juli	4.767	0	729	729
Aug.	4.089	0	729	729
Sep.	2.819	0	710	710
Okt.	1.774	221	793	1.014
Nov.	688	1.457	771	688
Dez.	396	2.109	798	396
Gesamt	32.844	7.970	9.051	9.638

Jährliche Stromerzeugung	32.844 kWh/a
Strombedarf für Wärmeerzeugung	17.022 kWh/a
anrechenbare Erzeugung	9.638 kWh/a
Prozentualer Anteil am gesamten Wärmeenergiebedarf	6,5 %

Wärmepumpe: Wärmepumpe

Von Erzeugereinheit bereit gestellte Wärmeenergie	59.981 kWh/a
Davon regenerativer Anteil für Heizung	20.213 kWh/a
Jahresarbeitszahl für Heizung der Erzeugereinheit	7,47
Davon regenerativer Anteil für Trinkwarmwasser	27.656 kWh/a
Jahresarbeitszahl für Trinkwarmwasser der Erzeugereinheit	4,08
Mit erneuerbaren Energien bereit gestellte Wärmeenergie	47.869 kWh/a
Prozentualer Anteil am gesamten Wärmeenergiebedarf	32,3 %

Wärmenetze: Nah-/Fernwärme 1

Vom Erzeuger bereit gestellte Wärmeenergie	8.902 kWh/a
Regenerativer Anteil des Energieträgers	100,0 %
Mit erneuerbaren Energien bereit gestellte Wärmeenergie	8.902 kWh/a
Prozentualer Anteil am gesamten Wärmeenergiebedarf	6,0 %

Kälte aus erneuerbaren Energien: Kühlsystem 1

Vom Erzeuger bereit gestellte Wärmeenergie	40.973 kWh/a
Regenerativer Anteil des Energieträgers	100,0 %
Mit erneuerbaren Energien bereit gestellte Wärmeenergie	40.973 kWh/a
Prozentualer Anteil am gesamten Wärmeenergiebedarf	27,6 %

Wärmerückgewinnung

Q _{outg,ohne} WRG	148.421,1 kWh/a
Q _{outg,mit WRG}	117.940,5 kWh/a
Differenz	30.480,7 kWh/a
Prozentualer Anteil am gesamten Wärmeenergiebedarf	20,5 %

ANMERKUNGEN

Die Nah-/Fernwärme 1 stellt in der Bilanzierung die geplante Abwasserwärmerückgewinnung dar. Ob die Dimensionierung realistisch ist, bedarf einer Prüfung.

Der enorme Bedarf an Kühlleistung scheint unrealistisch und lässt vermuten, dass die Berechnung fehlerhaft ist und überprüft werden müsste.

Bodenplatte Kellerwand

Bauteilkatalog

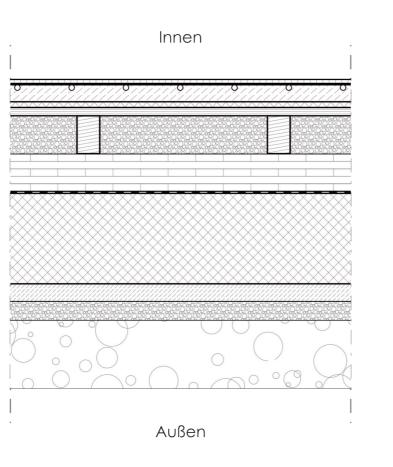
ANFORDERUNGEN

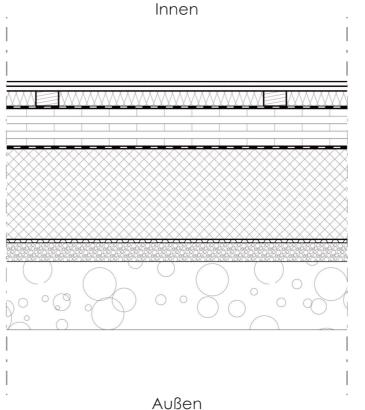
- -Wäremeschutz
- -Feuchteschutz
- -Lastabtrag

U-WERT

 $0.138 [W/(m^2K)]$

THERM. HÜLLFLÄCHE


570 m²


ANMERKUNGEN

Risikohafte Verwendung von Holz in feuchtebelastenden Bauteilen mit der CO² Einsparung durch den Verzicht auf Beton abwägen

5 Linoleum Fußbodenheizung in 45 LITHOTHERM Formplatte 15 Holzfaserplatte 30 Schalung Fichte 100 Installationsebene / Schüttung 100 Brettsperrholz EPDM Dichtbahn 240 GLAPOR Schaumglasplatte 50 Sauberkeitsschicht 30 Kies

Erdreich

2* GKF-Platte, verspachtelt, gestrichen
 Installationsebene, gedämmt

 Dampfbremse

 Brettsperrholz

 EPDM-Dichtbahn
 Schutzvlies

 Schaumglasplatte

 Noppenbahn (Schutz + Drainage)
 Kies
 Trennlage
 Erdreich

ANFORDERUNGEN

- -Wärmeschutz
- -Feuchteschutz
- -Widerstand Erddruck

U-WERT

0,145 m²

THERM. HÜLLFLÄCHE

174 m²

ANMERKUNGEN

Risikohafte Verwendung von Holz in feuchtebelastenden Bauteilen mit der CO² Einsparung durch den Verzicht auf Beton abwägen

Geschossdecke Wohnraum

Geschossdecke WC/ Flur

Bauteilkatalog

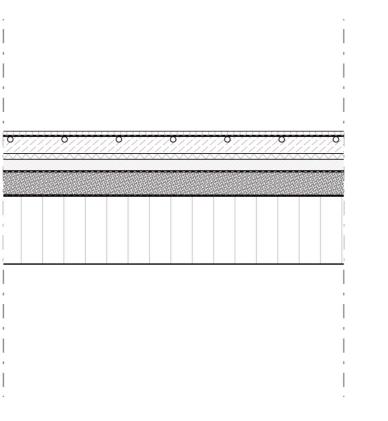
ANFORDERUNGEN

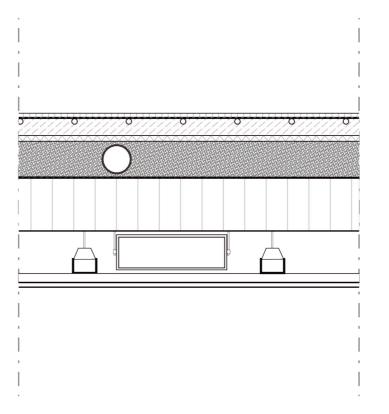
- -Lastabtrag
- -Trittschallpegel L' <53 dB
- -Brandschutz F60

U-WERT

THERM. HÜLLFLÄCHE

_


ANMERKUNGEN


Brettstapeldecke mit sichtbaren Unterseite auf Abbrand dimensioniert (140mm +40mm Abbrand)

Lehmschüttung dient als Rohdeckenbeschwerung für den Schallschutz

Linoleum Fertigparkett Lithotherm Trockenestrich Formplatte Holzfaserplatte Ausgleichschüttung / Kabelführung Trennvlies schw. Lehmschüttung in Pappwaben Rieselschutz Eingenutetes Metallband (Aussteifung)

Gedübelte Brettstapeldecke

10	Fliesen (Bad)	
ODER	R Linoleum Fertigparkett (Flur)	
45	Lithotherm Trockenestrich Formplatte	
10	Holzweichfaserplatte	
90	Installationsebene Haustechnik	
IN	Schüttung	
	Rieselschutz	
	Eingenutetes Metallband (Aussteifung)	
140	Gedübelte Brettstapeldecke	
135	Abhangdecke (Lüftungsleitungen)	
		,

ANFORDERUNGEN

- -Lastabtrag
- -Trittschalpegel L' <53 dB
- -Brandschutz F60
- -Sanitärinstallation
- -Lüftungsinstallation

U-WERT

THERM. HÜLLFLÄCHE

ANMERKUNGEN

Höhe der Abhangdecke ist mit der Dimensionierung der Lüftungskanäle abzustimmen.

Flachdach Flachdach 2. OG EG

Bauteilkatalog

ANFORDERUNGEN

- -Lastabtrag
- -Wärmedämmung
- -Regenwasserretention

U-WERT

 $0,118 [W/(m^2K)]$

THERM. HÜLLFLÄCHE

270 m²,

ANMERKUNGEN

Brettstapeldecke mit sichtbaren Unterseite. Akkustikfräsungen in Gruppenräumen

100 Substrat und Begrünung

ODER Natursteinplatte in Kiesbett

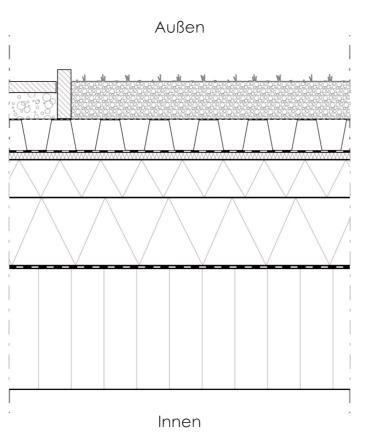
Filtervlies

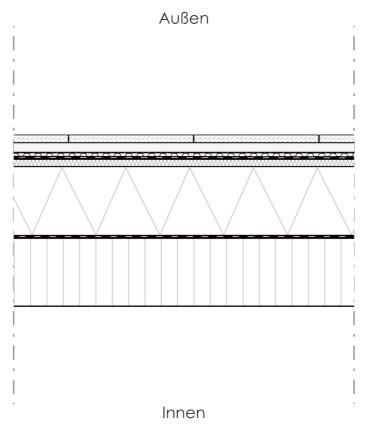
Drän- und Speicherelement

EPDM-Bahn, wurzelfest

Trittschalldämmung

Gefälledämmung


Holzweichfaserdämmung


Dampfsperre (sd>1000)

Glasvlies als Trenn und Gleitlage

Eingenutetes Metallband (Aussteifung)

Gedübelte Brettstapeldecke

20	Natursteinplatten, lose verlegt	-
30	Kiesbett, fein	-
	Filtervlies	-
20	Drän- und Speicherelement	
	EPDM-Bahn, wurzelfest	ι
20	Trittschalldämmung	C
140- 180	Holzweichfaser Gefälledämmung	T
	Dampfsperre (sd>1000)	1

122 m² Eingenutetes Metallband (Aussteifung) Glasvlies als Trenn und Gleitlage Gedübelte Brettstapeldecke

ANFORDERUNGEN

- -Lastabtrag
- -Wärmedämmung
- -Trittschalpegel L' <53 dB

U-WERT

 $0,169 [W/(m^2K)]$

THERM. HÜLLFLÄCHE

ANMERKUNGEN

Konflikt zwischen Wohnraumhöhe im Innenraum und Barrierefreier Zugänglichkeit der Terrasse -> evtl. schlankere Konstruktion möglich

Flachdach 4. OG

Außenwand

Bauteilkatalog

ANFORDERUNGEN

- -Lastabtrag
- -Wärmedämmung
- -Regenwasserretention

U-WERT

 $0.112 [W/(m^2K)]$

THERM. HÜLLFLÄCHE

328 m²,

ANMERKUNGEN

Auflastgehaltene PV-Anlage auf dem Dach 100 Substrat/ Kiesstreifen

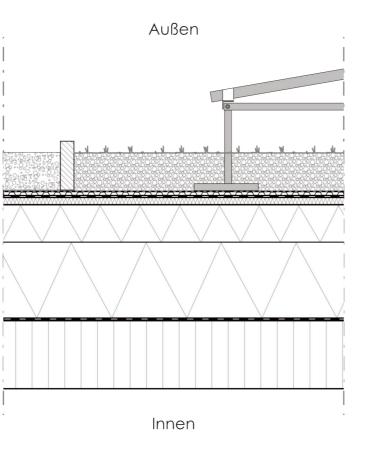
Filtervlies

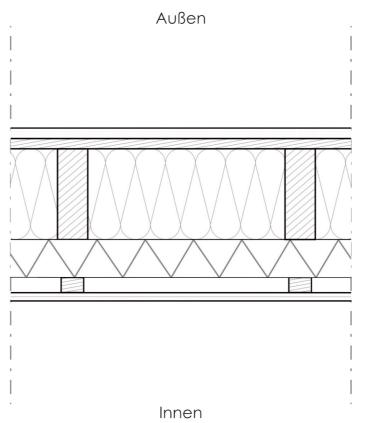
20 Drän- und Speicherelement

EPDM-Bahn, wurzelfest

0 Trittschalldämmung

200- Holzweichfaser


) Gefälledämmung


Dampfsperre (sd>1000)

Glasvlies als Trenn und Gleitlage

Eingenutetes Metallband (Aussteifung)

160 Gedübelte Brettstapeldecke

Schwere Lehmbauplatte verputzt, gestrichen
Diagonalschalung
Einblasdämmung Stroh
KVH (80/240, a=0,625m)
Holzfaserdämmplatte Schwer entflammbar
Konterlattung / Hinterlüftung
Traglattung

vorgegraute Lärchenschalung, vertikal

ANFORDERUNGEN

- -Wärmedämmung
- -Schallschutz (ger. Lärm)

U-WERT

 $0,126 [W/(m^2K)]$

THERM. HÜLLFLÄCHE

861 m²

ANMERKUNGEN

Brandschutz der Fassade wird durch Horizontale Brandbleche gewährleistet

20

Wohnung strennwand

Zimmertrennwand

Bauteilkatalog

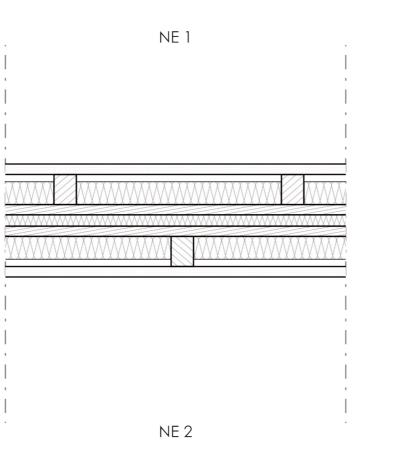
ANFORDERUNGEN

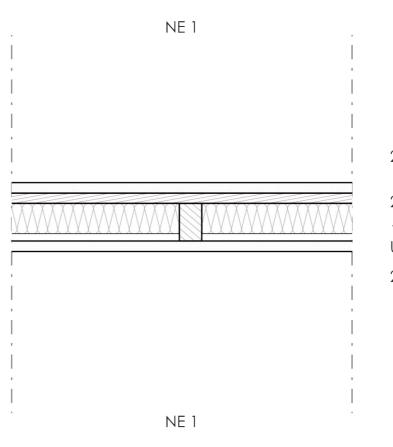
- -Schalldämmaß R' > 54 dB
- -Brandschutz F60
- -Elektroinstallation
- -Thermische Masse

U-WERT

THERM. HÜLLFLÄCHE

-


ANMERKUNGEN


Lehmbauplatten werden vor Ort montiert und kapseln Stützen und Unterzüge für Schall und Brandschutz

294

GESAMT

25	Schwere Lehmbauplatte verputzt, gestrichen
27	Diagonalschalung
100 JND	Ständerwerk Installationsebene, Gedämm
25	Schwere Lehmbauplatte verputzt, gestrichen

ANFORDERUNGEN

- -Elektroinstallation
- -Thermische Masse

U-WERT

THERM. HÜLLFLÄCHE

ANMERKUNGEN

Wände kommen einseitig beplankt auf die Baustelle um vor Ort Elektroinstallation zu ermöglichen.

ANFORDERUNGEN

- -Gebäudeausteifung
- -Schalldämmaß R' > 54 dB

Schwere Lehmbauplatte

Akkustische Trennfuge, gedämmt

Installationsebene, gedämmt

Schwere Lehmbauplatte

verputzt, gestrichen

Diagonalschalung

verputzt, gestrichen

Ständerwerk

GESAMT

140 Brettsperrholz

- -Brandschutz F90
- -Elektroinstallation
- -Thermische Masse

U-WERT

THERM. HÜLLFLÄCHE

ANMERKUNGEN

Statische Bemessung als aussteifendes Element wurde bisher nicht

Treppenhauswand

Brandwand

Treppenhaus

Wohnraum

Nachbargebäude Wohnraum

ANFORDERUNGEN

- -Gebäudeaussteifung
- -Brandschutz F90
- -Thermische Masse

U-WERT

Trenn- und Ausgleichfuge Nicht brennbar gedämmt

Installationsebene, gedämmt

Brettsperrholz

GESAMT

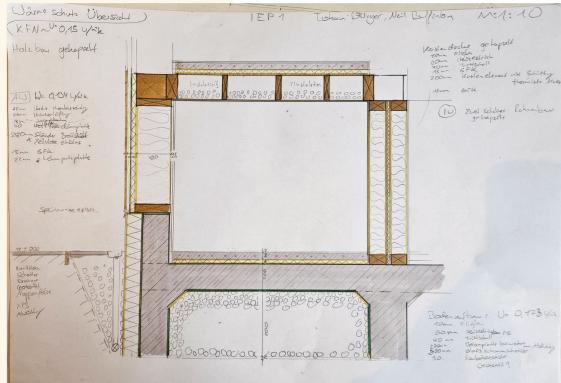
2*16 Schwere Lehmbauplatte

verputzt, gestrichen

140

312

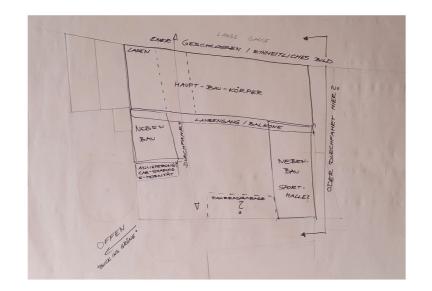
THERM. HÜLLFLÄCHE

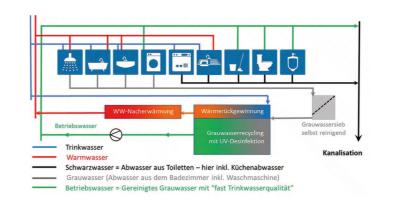

ANMERKUNGEN

Statische Bemessung als aussteifendes Element wurde bisher nicht vorgenommen.

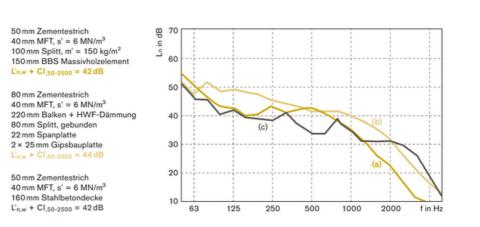
vorgenommen.

Bauteilkatalog


Recherche Entstehung Anhang


O.L.: Konstruktionsskizze

U.R.: Ansicht Nord, Stand


O.R.: Erste Vorüberlegung zur Zwischenabgabe

Vorbild Grauwassernutzung Grafik: Nolde und Partner

Inspiration für Dachbegrünung

Quelle: Hospiz Haus des Lebens

Recherche zum Schallschutz der Geschossdecken

Anhang

QUELLEN

- -Atlas mehrgeschossiger Holzbau
- -Informationsdienst Holz
- -BauNetzWissen
- -BaukoBox
- -Zuschnitt86 Balkone
- -Internet

GENUTZE SOFTWARE

- -ZUB Helena
- -Archicad
- -Autodesk Forma
- -Affinity Familie
- -Ubakus

26 Grafik: Informationsdienst Holz

Es handelt sich hierbei um eine Studienarbeit und dient der Übung. Die abgebildeten Inhalte können als Inspiration für weitere Projekte dienen, aber können nicht die Grundlage einer Umsetzung sein.

Stand: 20.01.2025

