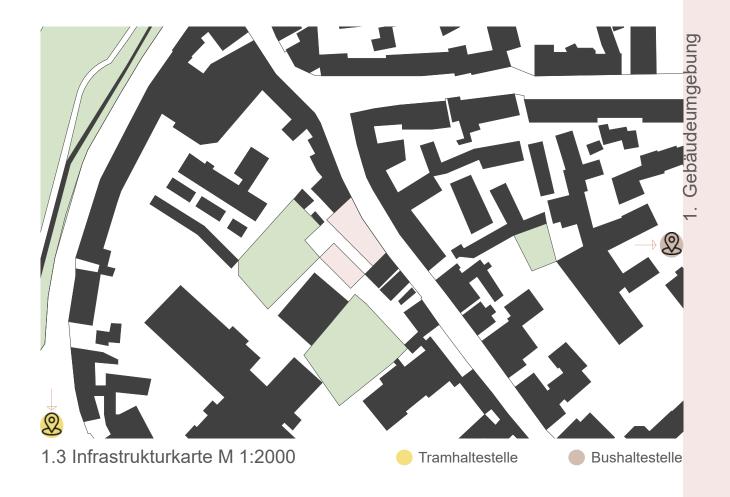
ROOFs

O O T

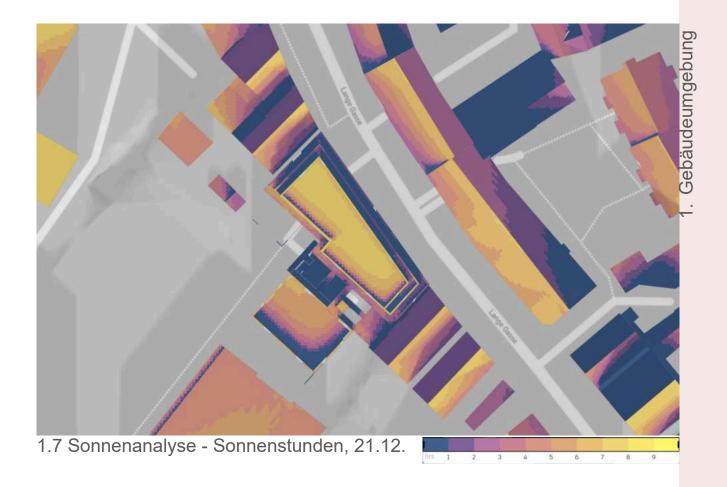
Inhaltsverzeichnis

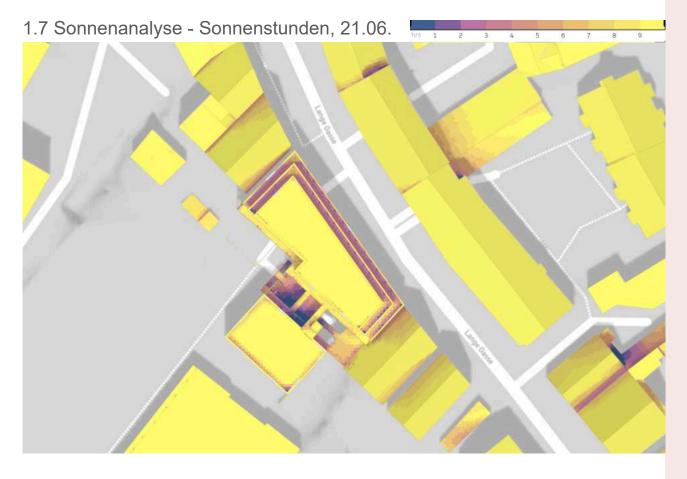
1. Gebäudeumgebung

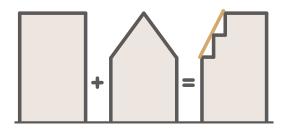

1.1 Schwarzplan 1.2 Grünplan	
1.3 Infrastrukturkarte	
1.4 Lageplan	4
1.5 Tageslichtanalyse	5 5
1.7 Sonnenanalyse	6
2. Nutzungstypologien	
2.1 Entwicklung des Baukörpers	7
2.2 Nutzungsverteilung der Grundrisse	8
2.3 Umfeldplanung	
3. Tragstruktur	
3.1 Erläuterung	11
4. Lüftungskonzept	
4.1 Erläuterung	13
5. Energiekonzept	
5.1 Gebäudedaten	14
5.2 Energetische Kenndaten	14
5.2.1 Transmissionswert	14
5.2.2 Bauteilaufbauten	
5.2.2.1 Herkunft der Baumaterialien	
5.2.3 Nutzenergiebedarf	
5.2.4 Energiebedarf5.2.5 Primärenergiebedarf	
5.2.6 CO ₂ - Emissionen	19
5.3 Anlagentechnik	
5.3.1 Heizungssystem / Trinkwarmwasser	20
5.3.2 Lüftung	20
5.4 Erneuerbare Energien	20
5.5 Erreichen des Effizienzhausniveaus	21
5.6 Diagramm / Grafik	22
5.7 Sommerlicher Wärmeschutz	23 24
o.o Ergeniiishewertarig	

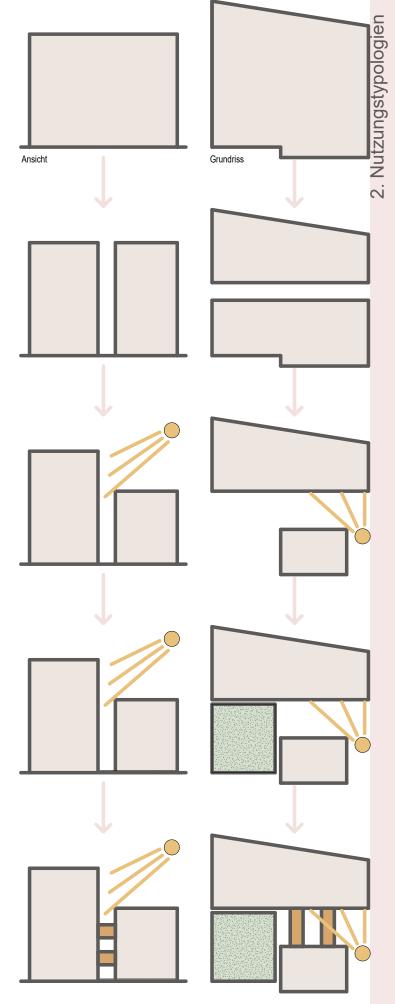
1.1 Schwarzplan M 1:2000

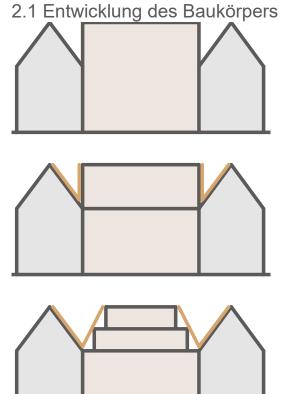
1.2 Grünplan M 1:2000

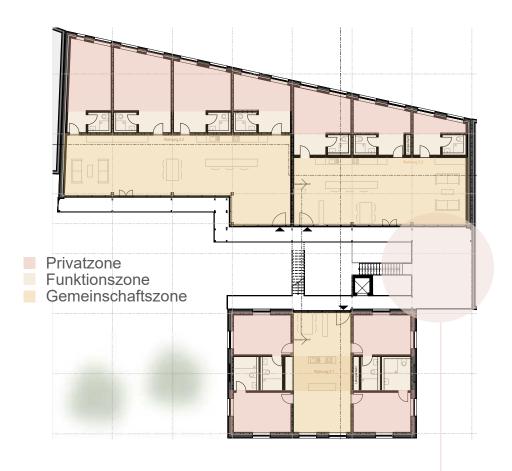



1.4 Lageplan M 1:1000

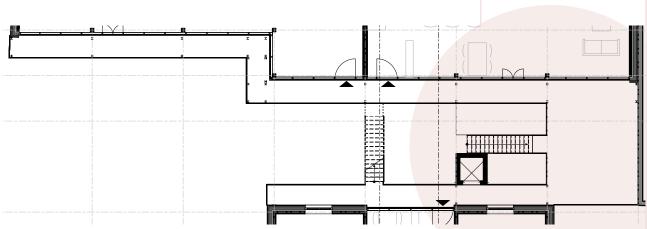




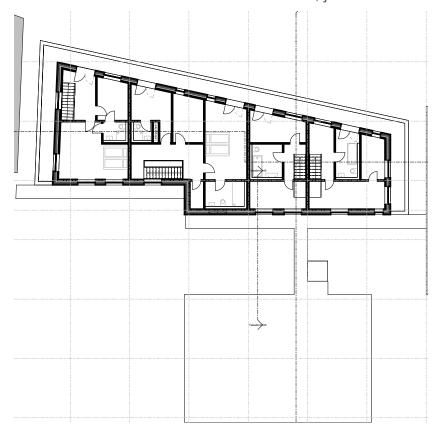



Roots & Roofs ist das Produkt aus einer möglichst effizienten Nutzung der Grundstücksfläche und der Anpassung an die Umgebung.

Hierbei wird auf die Neigung der umliegenden Gebäude durch die Abstufung der Dachgeschosse eingegangen.


Damit jede Wohnung mit ausreichend Tageslicht versorgt wird, sind zwei Baukörper entstanden, die über einen Laubengang miteinander verbunden sind.



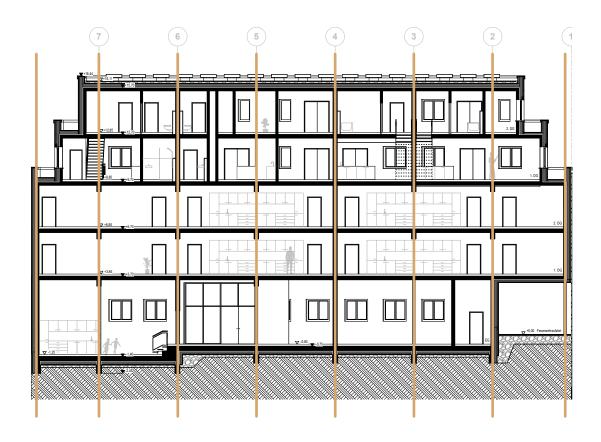

2.2 Nutzungsverteilung der Grundrisse

Die Idee des Grundrisses ist es, private und gemeinschaftliche Bereiche zu schaffen. Durch die Lage dieser Zonen entsteht zwischen den beiden Gebäuden Platz für Begegnung und Gemeinschaft.

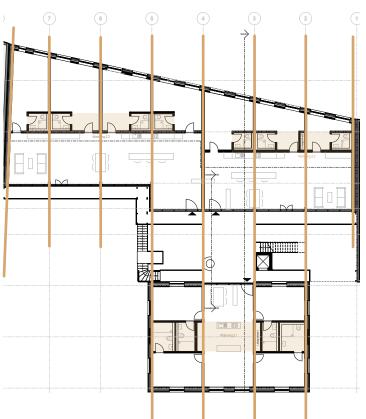
3 Personen 4+1 Personen 1 Person Zusätzlich zu den Wohngemeinschaften der unteren Geschossen, ist in den Dachgeschossen Raum für Familien. Die Maisonette - Wohnungen sind gegliedert in Untergeschoss - Aufenthaltsbereich - und Obergeschoss - Privaträume. Eine besonderes Konzept bietet die 4 + 1 Wohnung. Hier kann eine Familie mit einem Großelternteil unter einem Dach wohnen. Gemeinsam, jedoch mit Rückzugsmöglichkeiten.

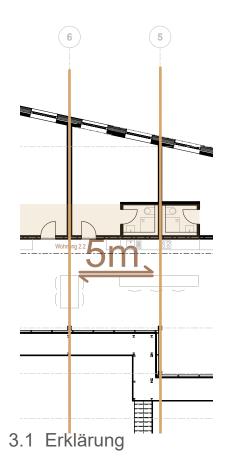
2.2 Nutzungsverteilung der Grundrisse

2.3 Umfeldplanung

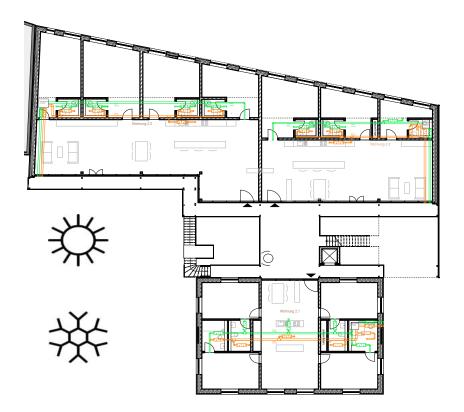

Das Erdgeschoss des einen Gebäudes setzt sich zusammen aus einer Multifunktiionsfläche, einem Tante - Emma Laden und dem Gemeinschaftsraum, das Andere für Wohnraum.

Der Gemeinschaftsraum bietet eine tolle Möglichkeit für die Bewohner der beiden Gebäude sich zu begegnen und unabhängig von den Witterungsbedingungen Zeit miteinander zu verbringen. Eine Kochmöglichkeit ist gegeben, sowie eine große Fläche für Veranstaltungen, Spieleabende etc. Eine Möglichkeit bei gutem Wetter dieses Miteinander nach draußen zu verlegen, ist durch die großzügige Terrasse gegeben.

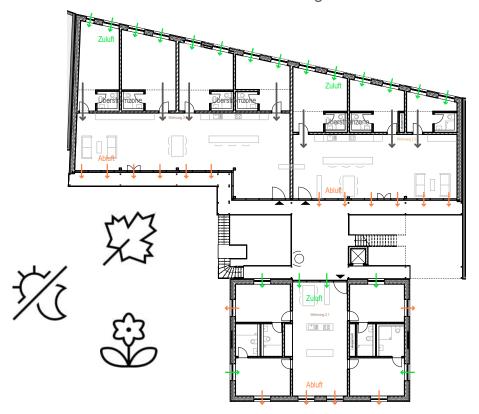

Die Multifunktionszone stellt einen Raum für Sport und Werken, aber auch als Abstellmöglichkeit und Eingang dar. Sie ist der Übergang vom öffentlichen Leben zu Roots & Roofs. Von hier aus erreicht man die Wohneinheiten, den Gemeinschaftsraum und den Tante - Emma Laden.


Dieser besteht aus einer Verkaufsfläche, einem Lager und einer Toilette. Den Bewohnern ist damit die Möglichkeit eines selbstgeführten Ladens gegeben. Dort können sie direkt vor Ort Lebensmittel erwerben.

Die Gebäude sind durch einen Laubengang miteinander verbunden, der von Rasenfläche umgeben wird. Hier kann man bei gutem Wetter gemütlich Zeit draußen verbringen.


3. Tragstruktur

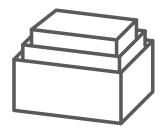
Die tragende Konstruktion von Roots & Roofs besteht aus Kalksandsteinwänden und 20cm dicken Stahlbetondecken. Diese Decken können so dünn ausgeführt werden, da die Spannweite nur 5m beträgt.


So wird auf ressourcenschonenden Einsatz des Materials geachtet.

4.1 Erklärung - Lüftungsanlage

Das Lüftungskonzept von Roots & Roofs besteht aus einer Mischung zwischen einer Lüftungsanlage und einer natürlichen Lüftung. Hierbei soll im Sommer und Winter über die Lüftungsanlag gelüftet werden. Wobei im Sommer noch eine Nachtlüftung zur Gebäudekühlung über die Fenster erfolgen kann. Im Frühling und Herbst kann die Lüftung auch allein über die Fenster erfolgen.

4.1 Erklärung - natürliche Lüftung


Volumen extern (brutto) Energiebezugsfläche A_N Nettoraumfläche, NRF bebaute Flächen Gebäudehüllfläche davon Fensterflächen u. Außentüren A/Ve 5.612,1 m³ 1.457,3 m² 1.589,36 m² 359,96 m² 2.246,01 m²

485,06 m² 0,4 m⁻¹


Volumen extern (brutto) Energiebezugsfläche A_N Nettoraumfläche, NRF bebaute Flächen Gebäudehüllfläche davon Fensterflächen u. Außentüren A/Ve

1.776,25 m³ 443,38 m² 435,12 m² 169,98 m² 2.148,8 m²

140,13 m² 1,21 m⁻¹

5.1 Gebäudedaten

5.2 Energetische Kenndaten

Transmissionswärmeverluste H_T spezifisch (pro m2 Hüllfläche) Referenzgebäude

Wärmebrückenzuschlag

0,286 W/m²K

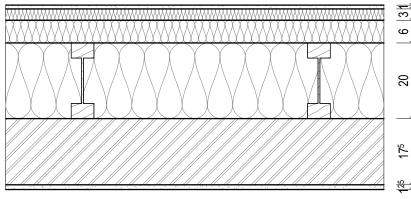
0,521 W/m²K

0,02 W/m²K

Transmissionswärmeverluste H_T spezifisch (pro m2 Hüllfläche)

Referenzgebäude

0,328 W/m²K

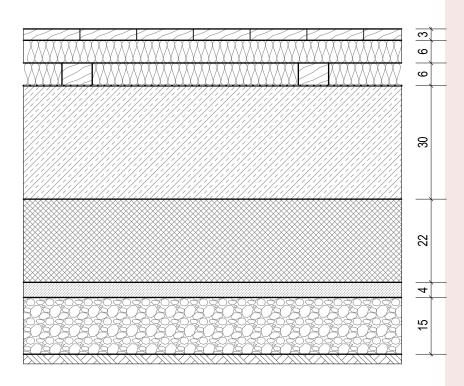

0,18 W/m2K

Wärmebrückenzuschlag

0,02 W/m2K

Außenwand-Aufbau

M1:10

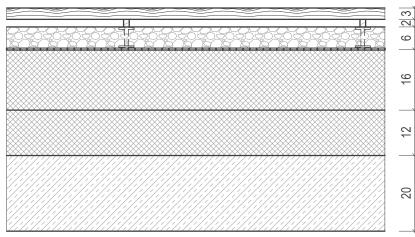


Außenwandaufbau, $U = 0,12 \text{ W/(m}^2\text{K)}$

Schicht	d in m	λ in W/mK	ρ in kg/m³	c in J/kgK
Lehmputz	0,0125	0,910	1500,0	1000
Kalksandstein	0,175	0,990	1800,0	1000
Schafwolle	0,200	0,042	19,5	1300
Steico Joist	0,200	0,078	326,0	2100
Holzfaserdämmung Steicoflex 034	0,060	0,036	50,0	2100
Holzfaserdämmung Steicoflex 034	0,030	0,036	50,0	2100
Außenputz	0,010	1,000	1800,0	1000

Bodenplatte-Aufbau

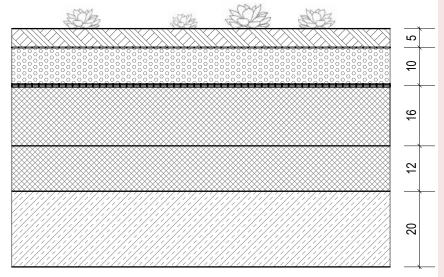
M1:10



Bodenaufbau, **U=0,16 W/(m²K)**

Schicht	d in m	λ in W/mK	ρ in kg/m³	c in J/kgK
Holzdielen	0,03	0,130	460	2100
Schafwolldämmung/Kantholz	0,06	0,042	19,5	1300
Schafwolldämmung/Kantholz	0,06	0,042	19,5	1300
Abdichtungsbahn	-	-	-	-
Stahlbetonplatte	0,30	2,300	2300	880
Schaumglasdämmung	0,22	0,041	100	1000
Sauberkeitsschicht	0,04	1,350	2000	900
Kapillarbrechende Schicht	0,15	-	-	-

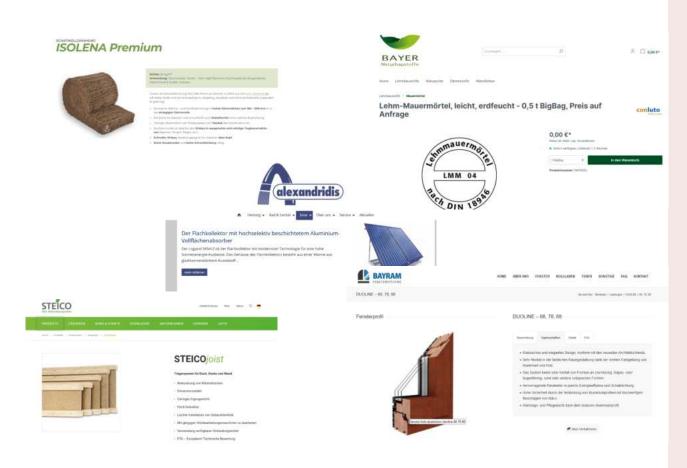
Dachterrasse-Aufbau


M1:10

Flachdachaufbau, $U = 0.14 \text{ W/(m}^2\text{K)}$

Schicht	d in m	λ in W/mK	ρ in kg/m³	c in J/kgK
Vegetationsschicht	-	-	-	-
Extensivsubstrat	0,05	1,500	1450	880
Filtermatte	-	-	-	-
Dränschicht	0,10	0,700	1840	1840
Rieselschutzvlies	-	-	-	-
EPDM-Abdichtung, 2-lagig	-	-	-	-
Gefälledämmung	0,16	0,041	100	1000
Schaumglasdämmung	0,12	0,041	100	1000
Stahlbetondecke	0,20	2,50	2400	880

Gründach-Aufbau M1:10


Es wird angenommen, dass der Beton dampfdicht ausgeführt ist

Dachterrassenaufbau

Schicht	d in m	λ in W/mK	ρ in kg/m³	c in J/kgK
Holzbelag	0,03	0,13	460	2100
Unterkonstruktion	0,02	-	-	
Kiesschicht	0,06	-	-	-
EPDM-Abdichtung, 2-lagig	-	-	-	-
Gefälledämmung	0,16	0,041	100	1000
Schaumglasdämmung	0,12	0,041	100	1000
Stahlbetondecke	0,20	2,50	2500	880

5.2.2.1 Herkunft der Baumaterialien

Nutzenergiebedarf

a. spezifisch

(pro m2 A_N) b. absolut 14,92 kWh/m²*a 21.735,6 kWh/a

Nutzenergiebedarf

a. spezifisch (pro m2 A_N) 43,88 kWh/m²*a b. absolut 19.474,7 kWh/a

5.2.3 Nutzenergiebedarf

5.2.4 Energiebedarf

Endenergiebedarf

a. spezifisch (pro m2 A_N)

b. absolut

c. Referenzgebäude, spez.

d. Referenzgebäude, absolut

22,7 kWh/m²*a 34.306 kWh / a 38,8 kWh/m²*a 56.589 kWh / a

Endenergiebedarf

a. spezifisch (pro m2 A_N)

b. absolut

c. Referenzgebäude, spez.

d. Referenzgebäude, absolut

 $61,18 \text{ kWh/m}^2 *a 27.153,1 kWh / a$ 87,3 kWh/m²*a 38.739,1 kWh / a

Primärenergiebedarf

- a. spezifisch (pro m2 A_N)
- b. absolut
- c. Referenzgebäude
- d. Referenzgebäude, absolut

10,0 kWh/m^{2*}a 14.587,5 kWh / a 69,9 kWh/m^{2*}a 101.843,7 kWh / a

5.2.5 Primärenergiebedarf

Primärenergiebedarf

- a. spezifisch (pro m2 A_N)
- b. absolut
- c. Referenzgebäude
- d. Referenzgebäude, absolut

 $13,58 \text{ kWh/m}^2$ *a 6.027,6 kWh / a 83,07 kWh/m²*a

67.032,2 kWh / a

5.2.6 CO₂ - Emissionen

CO2-Emissionen

- a. spezifisch (pro m2 A_N)
- b. absolut
- c. Referenzgebäude
- d. Referenzgebäude, absolut

2,0 kgCO₂/m²*a 2.963 kgCO₂/ a 15,55 kgCO₂/m²*a 22.654,4 kgCO₂/ a

CO2-Emissionen

a. spezifisch (pro m 2 A $_N$) 1,5 kgCO $_2$ /m 2 *a b. absolut 687,4 kgCO $_2$ / a c. Referenzgebäude 33,64 kgCO $_2$ /m 2 *a d. Referenzgebäude, absolut 14.927,6 kgCO $_2$ / a

Heizungssystem / Trinkwarmwasser

a. Erzeuger Solaranlage, Nah-/ Fernwärme b. Speicherung Kombispeicher

b. Speicherung Kombispeicher c. Verteilung Steigleitungen d. Übergabe Flächenheizung

Lüftung a. Art / System b. WRG-Grad

Zu-/ Abluftsystem 0,8

5.3 Anlagentechnik

5.3.1 Heizungssystem / Trinkwarmwasser

5.3.2 Lüftung

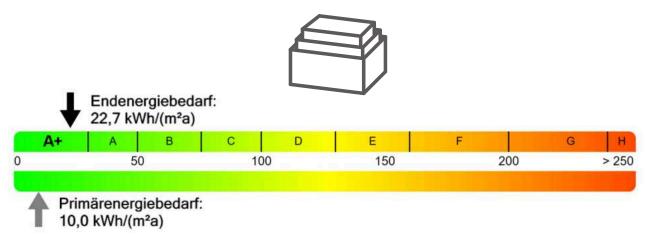
5.4 Erneuerbare Energien

Art Photovoltaik durch Jalousien, (+Solarthermie)

Fläche 10 m²

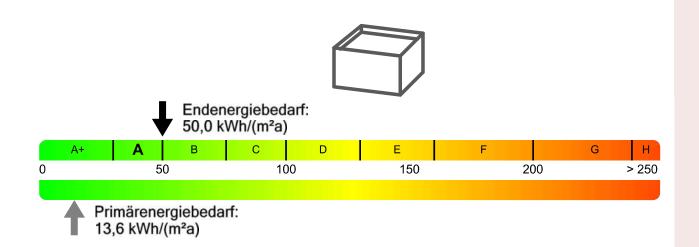
Ertrag 1.340,8 kWh/Monat

Deckungsanteil am Energiebedarf 3,6%

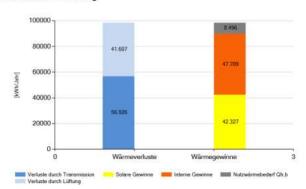

Art Photovoltaik durch Jalousien

Fläche 10 m²

Ertrag 1.437,18 kWh/a

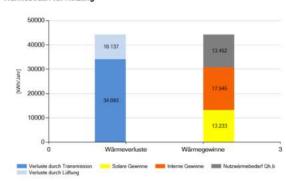

Deckungsanteil am Energiebedarf 5,3%

	Transmissionswärmeverlust H` _T [W/m²K]	Endenergiebedarf [kWh/m²*a]	Primärenergiebedarf [kWh/m²*a]	
Ihr Gebäude Referenzgebäude	0,286 0,521	22,7 38,8	10,01 38,44	100
Maß der Unterschreitung A. Transmissionswärmeverl. B. Primärenergiebedarf	% des Referenzgb. 54,9 26			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



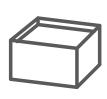
5.5 Erreichen des Effizienzhausniveaus

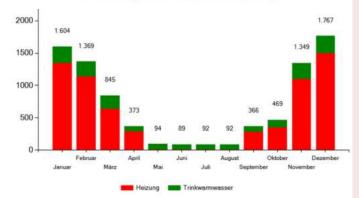
	Transmissionswärme-	Endenergiebedarf	Primärenergiebedarf
	verlust H΄ _τ [W/m²K]	[kWh/m²*a]	[kWh/m²*a]
Ihr Gebäude	0,18	50	13,58
Referenzgebäude	0,328	38,8	83,07
Maß der Unterschreitung A. Transmissionswärmeverl. B. Primärenergiebedarf	% des Referenzgb. 54,9 16,3		



Wärmebedarf für Heizung

Wärmebedarf für Heizung


5.6 Diagramm / Grafik


Primärenergiebedarf des Gebäudes [kWh/a]

Primärenergiebedarf des Gebäudes [kWh/a]

Simulation des sommerlichen Wärmeschutzes

Verglasungen

Zusammenfassung

Bezeichnung / Typ		U-Wert [W/(m²K)]	g-Wert [-]
Holz/ Holz-Alu Fenster	Dreifachverglasung	0,79	0,553

Holz/ Holz-Alu Fenster

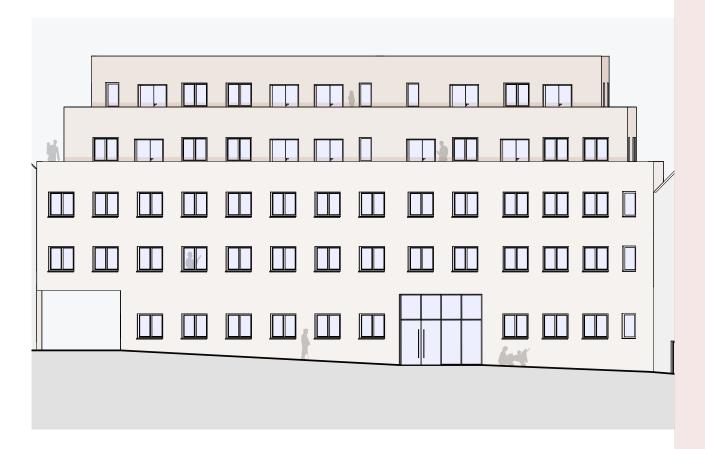
Herstellerkennwerte:	
Glastyp	Dreifachverglasung
direkter Strahlungsabsorptionsgrad (außen) α _{e1} [-]	0,11
direkter Strahlungsabsorptionsgrad (Mitte) α _{e2} [-]	0,11
direkter Strahlungsabsorptionsgrad (innen) α _{e3} [-]	0,11
direkter Strahlungstransmissionsgrad τ_{e} [-]	0,40
direkter Strahlungsreflexionsgrad ρ _e [-]	0,27
U-Wert [W/(m²K)]	0,79
g-Wert [-]	0,553

Sonnenschutzvorrichtungen

Zusammenfassung

Bezeichnung	F _c [-]
Vordächer, Markisen allgemein, freistehende Lamellen (außenliegend)	0,50
Jalousie und Raffstore, drehbare Lamellen, 45° Lamellenstellung (außenliegend)	0,25

Vordächer, Markisen allgemein, freistehende Lamellen (außenliegend)


Abminderungsfaktor F _C [-]	0,50 (direkte Eingabe)
Sonnenschutzvorrichtung	Vordächer, Markisen allgemein, freistehende Lamellen (außenliegend)
Steuerung	Feststehende Sonnenschutzvorrichtung
g-Wert des Fensters ist kleiner oder gleich 0,40	nein

Jalousie und Raffstore, drehbare Lamellen, 45° Lamellenstellung (außenliegend)

Abminderungsfaktor F _C [-]	0,25 (direkte Eingabe)
Sonnenschutzvorrichtung	Jalousie und Raffstore, drehbare Lamellen, 45° Lamellenstellung (außenliegend)
Steuerung	Variable Sonnenschutzvorrichtung mit manueller Steuerung oder Standardgrenzbestrahlungsstärken
Grenzbestrahlungsstärke [W/m²]	150 - 300 (je nach Nutzung und Ausrichtung) gemäß DIN 4108-2, Abschnitt 8.4.2
g-Wert des Fensters ist kleiner oder gleich 0,40	nein

Roots & Roofs ist ein KfN - Haus. Das KfN 40-Konzept wurde hierbei konsequent umgesetzt, um ein klimafreundliches und energieeffizientes Gebäude zu schaffen. Die Kombination aus fortschrittlicher Dämmung, nachhaltigen Baustoffen aus der Region und modernster Haustechnik reduziert den Primärenergiebedarf auf 40% des vergleichbaren Referenzgebäudes. Photovoltaikanlagen und Solarthermie auf dem Dach erzeugen erneuerbare Energie, während Lüftungssysteme mit Wärmerückgewinnung für minimalen Energieverbrauch sorgen.

5.8 Ergebnisbewertung

